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RE: Docket No. 58-0102-1201 - Negotiated Rulemaking
Human Health Water Quality Criteria (HHWQC)

Dear Ms. Wilson:

Clearwater Paper offers this comment letter on the subject rulemaking. We appreciate the Idaho
Department of Environmental Quality’s (IDEQ) work on this very important matter and look forward to
our continued participation in this rulemaking process.

This rulemaking has been particularly complex and we highly commend IDEQ for their technical and
policy work on this subject. Our company, industry and ultimately Idaho’s economic, social and public
health systems must rely on using the best available science and making viable policy choices to ensure
the protection of human health and a reasonable allocation of resources while preserving a fully
functioning economy. We understand the varied, external pressures IDEQ must address in regards to
this matter. Clearly and unfortunately, some of the dialogue around the subject is not always based on
rational risk policy choices or science but rather optics and politics that are not the best, nor an
appropriate, prism through which to make highly technical decisions for the good of the people and
state of Idaho. As IDEQ considers final HHWQC, we urge you to use sound science, to exercise the
flexibility allowed under the Clean Water Act (CWA) in making risk policy decisions and to consider the
long-term view of the resources that would be required by the state, municipalities and industry to meet
the proposed HHWQC. There is clearly a balance between the cost and benefits associated with
implementing any final criteria that IDEQ must consider before finalizing the proposed rule.

Best Available Science

IDEQ’s use of a state-based fish consumption survey, correction of the data used in the analysis for fish
not found in Idaho waters or the waters of nearby states, assumption of minimal anadromous fish and
use of a probabilistic risk assessment approach are commendable and scientifically sound. The demand
by some to include all market and anadromous fish in Idaho appears to be motivated by factors other
than science or human health concerns for Idahoans. Furthermore, it is not based on the data gathered
via the Idaho fish consumption survey. We strongly advocate for a science-based outcome on these
issues.



Risk Policy Choices
We urge IDEQ to reassess its proposed risk policy choices on carcinogens and non-carcinogens.

Based on material previously submitted by ARCADIS, a nationally recognized environmental consulting
firm, there is no measurable difference in the number of excess cancers expected for Idaho residents
under criteria based on a 10° versus 10° excess lifetime cancer risk (ELCR). Specifically, deriving criteria
based on a 10 (instead of 10°°) allowable ELCR management goal for the population size of Idaho would
be expected to lead to an increase of 0.23 cancers in total per year—from 2570.00 to 2570.23 (based on
the 2012 Idaho population). If a 1x10® ELCR were used, the increase would be 0.023—from 2570.00 to
2570.023 (based on the 2012 Idaho population). The difference in the number of excess cancers
resulting from the application of criteria based on the different risk levels is so small that it is basically
immeasurable and statistically without meaning because of the year-to-year variation in cancer
incidence. Moreover, as noted in the IACI comments, these calculations do not reflect that IDEQ is
currently proposing to apply the 1x10°® risk management goal to the 95th percentile of the general
population, an even more stringent benchmark than used in the above example and much more
stringent than the EPA’s national risk policy guidance.

Clearwater Paper urges IDEQ to modify the ELCR used in selecting carcinogenic HHWQC's to the more
stringent of 1 in a 100,000 at the 95" risk percentile of either the general population or the tribal risk
distributions assuming the very important statistical correction discussed below (and in Attachment A) is
adopted by IDEQ. With this adjustment, spurious 303(d) listings will be avoided and only those water
bodies posing elevated and unacceptable risk would be listed thereby avoiding unneeded TMDL’s and
unwarranted NPDES allocations that provide no measureable improvement in public health. To provide
some perspective, the added risk from the proposed risk policy change is the equivalent of the average
Idahoan driving an additional 11 miles a year.

Noted below is a discussion of the cost implication of the proposed standard—$16 billion over the next
25 years for municipal and industrial dischargers in Idaho, with no guarantee of even achieving the de
minimis benefit represented by the proposed HHWQC based on an ELCR of 10 (when compared to
10°).

EPA Risk Policy Objective for Idaho

Based on the EPA’s comment letters in regards to this matter, the EPA is not aligned with the their
existing HHWQC risk policy guidance, case law nor how risk-based levels are established by the federal
agency under other programs

Idaho, as do all states, has the primary role in setting water quality criteria for its citizens. This point is
established in the CWA and long recognized by federal courts.

The federal appellate court in NRDC v. EPA, 16 F.3™ 1395 (4th Cir. 1993) emphasized that the states have
the primary role in setting water quality criteria and that the EPA’s role is to review those criteria for
sufficiency under the CWA, not to impose its own views on what the standards should be. That court,
along with the district court, upheld the EPA’s approval of Maryland’s and Virginia’s use of a 1 in
100,000 (10°) excess lifetime cancer risk factor in establishing dioxin criteria (using a 6.5 grams per day
fish consumption rate). Another federal appellate court, the 9th Circuit, upheld the EPA’s use of 1 in
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1,000,000 (10°®) risk factor applied to a 6.5 grams per day fish consumption rate, which resulted (based
on the evidence presented in that case) in a 23 in 1,000,000 risk factor for high-fish consumers. Dioxin
Organochlorine Center v. Clarke, 57 F.3d 1517, at 1524 (9th Cir. 1995).

Essentially, the federal courts deferred to the EPA and the states as to the appropriate risk factors.
Given the role of the states in establishing water quality criteria, and given that the courts have held
that a 1in 100,000 risk factor is within the appropriate range, the burden would be on the EPA to
explain why the use of a 1 in 100,000 risk factor would produce unacceptable levels of risk in Idaho but
not in Maryland or Virginia.

In State Of Ohio v. U.S.E.P.A, 997 F.2d 1520 (D.C. Cir. 1993) , which was cited favorably in the 9" Circuit
decision, another federal appellate court upheld the use of a variable risk factor ranging from 1 in
10,000 to 1 in 1,000,000, based on site-specific factors. Although this was an environmental clean-up
case, it supports the proposition that different risk factors may be used in different circumstances--a
single risk factor need not be used in all circumstances. *

In summary, under the CWA each state is provided a broad amount of flexibility to choose risk
management policies when setting human health criteria. One of these risk management policies
involves setting a level for excess cancer risks. The EPA specifically instructs that states may use a
cancer risk range of either 10° or 10” to protect the general population so long as highly exposed
populations are protected at a 10™ cancer risk level. See Methodology for Deriving Ambient Water
Quality Criteria for the Protection of Human Health (EPA 2000), 65 Fed. Reg. 66444 (November 3, 2000).
While today’s EPA seemingly may not like this guidance or the judicial cases confirming the state’s
discretion in this area, they remain the authoritative interpretation of the state’s discretion under the
CWA.

Because the appropriate level of risk is a matter of policy, IDEQ and the Idaho Legislature represent the
appropriate bodies to establish the state’s policy on risk.

IDEQ's Risk Policy Choices and Idaho Stringency Requirements

In the proposed rule, IDEQ has applied certain risk policy decisions in setting the proposed criteria that
appear contrary to the spirit if not the specific intent of state law. Idaho Code 39-3602 prohibits IDEQ
from adopting water quality standards that “impose requirements” beyond the minimum requirements
of the CWA. Additionally, Idaho Code 39-107D requires IDEQ to specifically identify those provisions in
proposed rules that are “broader in scope or more stringent than” the requirements under the CWA.
We believe that these two provisions explicitly or implicitly create a directive to IDEQ to exercise

! Please note Attachment B which demonstrates how states have adopted different risk factors for their
clean-up programs. While different than HHWQC, clean-up programs generally deal with “real-life”
exposure to citizens. It is not realistic to assume that the average Idahoan drinks untreated surface
water and eats extraordinary amounts of local fish, especially given that approximately 90% of all
Idahoans receive their primary drinking water from groundwater sources.
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whatever flexibility is afforded the state under the CWA when promulgating water quality standards to
avoid overregulation of Idaho citizens.

As noted above, the CWA provides each state a broad amount of flexibility to choose risk management
policies when setting human health criteria and the EPA specifically instructs that states may use a
cancer risk range of either 10° or 10” to protect the general population so long as highly exposed
populations are protected at a 10™ cancer risk level.

This range of risk (10 to 10™) is not unique to setting human health criteria under the CWA. Under the
Safe Drinking Water Act for example, maximum contaminant levels (MCLs) are set using this same range
of risk levels (which are incorporated into Idaho’s Ground Water Rule). Similarly these same risk levels
are used to set clean-up standards at contaminated sites under the Federal Superfund law (CERCLA). It
is important to note that the Idaho Legislature has sanctioned the same range of risks allowed under
CERCLA to apply to IDEQ supervised clean-ups in the Idaho Land Remediation Act, Idaho Code 39-
7210(1).

It was therefore disappointing that, and perplexing as to why, IDEQ has proposed the application of a
10 cancer risk level to protect a very small, higher fish-consuming portion of the Idaho population for
setting criteria for all Idahoans. We believe such a decision would result in overly stringent criteria being
adopted. As noted above applying a risk level between 10 to 10 is well established under Idaho law,
federal law and the EPA’s own guidance. IDEQ should exercise the flexibility allowed by the EPA
guidance and sanctioned by the courts and adopt a risk level at 10® that would also protect those who
consume fish at higher levels with a 10 level. We believe such a policy choice is what the Idaho
Legislature had in mind when it passed laws directing IDEQ not to adopt water quality rules that are
more stringent than EPA minimum requirements.

Relative Source Contribution (RSC)

Please refer to Attachment C, which presents an assessment of IDEQ’s choices to set more reasonable
than “default” RSC’s in establishing the HHWQC for non-carcinogens. Clearwater Paper urges IDEQ to
use the best available science in setting RSC’s that reflect actual (not defaulting to worst case) risks to
the citizens of Idaho from drinking untreated surface water and eating local fish.

Market Fish

Clearwater Paper supports IDEQ’s scientifically justified choice of limiting the level of market fish by
including only those fish reared naturally or purposefully in Idaho to set HHWQC. To include species not
grown in Idaho or Pacific Northwest states in a fish consumption rate would be overly stringent and
quite frankly result in risk assessments not rooted in reality. Because it is scientifically based and
defensible and would result in an accurate risk assessment outcome, we strongly urge IDEQ to maintain
the treatment of market fish as proposed.

Anadromous Fish
As with the issue of market fish, including anadromous fish that spend a negligible amount of time in
Idaho waters would result in an overly stringent risk calculation and would have a negligible difference

on the actual risk to those eating large amounts of anadromous fish. Forcing Idaho to adopt overly and
unnecessarily stringent controls would not affect contaminants in anadromous fish: so to include such
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fish in the determination of HHWQC is not following a science-based decision process. Because it is
scientifically based and defensible and would result in an accurate risk assessment outcome, we strongly
urge IDEQ to maintain the treatment of anadromous fish as proposed.

Probabilistic Risk Assessment (PRA)

Using a probabilistic risk assessment approach for HHWQC criteria represents the best available science
for setting HHWQC. EPA has endorsed PRA as noted in our comment later dated April 18, 2014, and as
shown in Attachment D.

Even the EPA’s website advocates for the use of PRA. See http.//www2.epa.qov/osa/probabilistic-risk-
assessment-white-paper-and-supporting-documents. Because it is scientifically based and defensible and
would result in an accurate risk assessment outcome, we strongly urge IDEQ to maintain the use of PRA
as proposed.

Tribal Survey Results

As noted above Attachment A describes a statistically necessary adjustment to the tribal fish
consumption data set used by DEQ in setting HHWQC. This data only became available from the EPA
last week but should be reflected in the final HHWQC criteria that IDEQ adopts and proposes for
approval by the IDEQ board and Idaho Legislature. Some of the HHWQC as proposed are now
inconsistent with IDEQ’s stated risk policy choices.

Disconnect Between Proposed HHWQC and Drinking Water MCL’s

The human health risk levels used to set MCL’s under the Safe Drinking Water Act should be the same
risk levels used to set HHWQC’s. To manage drinking water (where the general population is being
exposed every day) at a less stringent risk level than HHWQC based on drinking untreated surface water
and eating local fish would defy common sense and set grossly inconsistent public policy. Drinking
water MCL’s are based on the feasibility of treatment and are a well-considered balance of public health
concerns and resources. To set HHWQC using risk levels more stringent than drinking water standards
would also result in a serious misallocation of public and private resources. For those contaminants that
have MCL'’s, we strongly urge IDEQ not to set HHWQC more stringent than the equivalent risk associated
with the applicable MCL's.

Cost of Implementation

Please note Attachment E which presents an estimated summary of capital and operating costs to Idaho
municipalities and businesses if Idaho were to adopt a PCB criterion of 61 pg/l. This analysis represents

the costs when the state follows the expected CWA processes of 303(d) impairment listings, TMDL’s and
NDPES permit limitations associated with a 61 pg/I PCB criterion.

Based on the proposed regulatory framework, the estimated cost to Idaho cities would be $13.8 billion
over the next 25 years plus $2.6 billion more to Idaho businesses, with an infinitesimal, to potentially no,
reduction in risk to Idaho citizens from building and operating these systems. This is not sound public
policy and does not represent a reasonable allocation of public and private resources.
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We believe IDEQ may not have properly accounted for the compliance costs of the proposed rule.
Additionally, the cost to the state involved in the development of TMDLs, TMDL implementation plans
and modification of NPDES and storm water permits would be substantial. Given the nature of this
rulemaking and the costs involved, IDEQ is required to estimate the costs, economic impact and
evaluation of benefits for the proposed rule. See Idaho Code 67-5223. We do not believe IDEQ has
adequately fulfilled that obligation here. Because of the flexibility IDEQ has in the proposed rule to
establish a range of risk levels (as discussed above) we believe that to adequately fulfill IDEQ’s
obligations to notify the public and the Idaho Legislature on the costs and benefits of a proposed rule, a
comparison should be made of the costs (and benefits) associated with applying a risk level of 10 to
10°. We believe such a comparison would truly allow the public and the Legislature to evaluate the
proposed rule. We are confident that if IDEQ evaluated the public health benefits associated with the
human health criteria at both 10° and 107 risk levels and compared these to the associated costs, it
would conclude that the added costs do not justify the very incidental human health benefits potentially
associated with choosing a 10°® cancer risk level.

Downstream Waters
We urge IDEQ to withdraw this provision (IDAPA 58.01.02.070.08) for the reasons specified in our letter
of August 20, 2015. In short, we believe this provision raises too many questions as to how it will be

implemented and may complicate approval of this rule by the EPA in light of conflicting state and tribal
criteria in this area.

On behalf of Clearwater Paper, we appreciate the opportunity to provide comments on this important
matter and look forward to participating in this process as this rulemaking goes forward.

Please contact me at 509-344-5956 or marv.lewallen@clearwaterpaper.com with questions.

Sincerely yours,

4. A bt~

Marvin A. Lewallen
Vice President — Environmental, Energy & Sustainability

Encl. Attachment A
Attachment B
Attachment C
Attachment D
Attachment E
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1 INTRODUCTION

On October 7, 2015, the Idaho Department of Environmental Quality (IDEQ) released its draft human
health ambient water quality criteria (HHAWQC) rule. The draft HHAWQC were calculated using
probabilistic risk assessment methods, using distributions capturing the variability in fish consumption rate
(FCR), drinking water intake, and body weight across the Idaho population. IDEQ derived two sets of
HHAWQC: one set focused on the general Idaho population and the other set focused on high consuming
subpopulations, represented by Nez Perce tribal members. The 95™ percentile of the general population
and arithmetic mean of the high consuming subpopulation were targeted with an acceptable excess
lifetime cancer risk (ELCR) of 1x10°¢ and non-carcinogenic hazard index (HI) of 1.0.

The process used to derive IDEQ’s draft HHAWQC is described in greater detail by Windward (2015).
This report focuses specifically on the FCR distributions used to derive the draft HHAWQC, both for the
general and tribal populations of Idaho.

2 EMPIRICAL FISH CONSUMPTION RATE DISTRIBUTIONS

IDEQ recently completed a state-wide survey on fish consumption in Idaho (NWRG 2015). National
Cancer Institute (NCl)-adjusted usual intake distributions for fish consumption, as reported by Buckman et
al. (2015), were used to develop FCR distributions for the general population of Idaho. IDEQ chose to
base its draft HHAWQC on consumption of resident freshwater fish, referred to as Idaho fish* (IDEQ 2015,
NWRG 2015). Buckman et al. (2015) reports summary statistics for the empirical NCl-adjusted distribution
of general population Idaho fish consumption, including the mean and each integer percentile (Table 1).

The empirical Idaho fish distribution includes a 100" percentile? value of 1,261 grams per day (g/day),
equivalent to approximately 1,000-2,000 calories per day, depending on the species. This estimated value
has a reported standard error of 612 g/day and is more than two times larger than the 100" percentile
value reported for consumption of all fish (533 g/day), of which Idaho fish is by definition a subset
(Buckman et al. 2015). The 99" percentile reported for consumption of Idaho fish is 40.6 g/day, over 30
times lower than the 100" percentile estimate. This increase between the 99" and 100" percentiles is
extreme; in comparison, the 99" and 100" percentile estimates for consumption of all fish (118 g/day and
553 g/day, respectively) only differ by a factor of five. Therefore, this 100™ percentile estimate is highly
uncertain and should either be used with great caution or not used at all in the derivation of a FCR
distribution for the purpose of establishing HHAWQC for Idaho.

1 1daho fish is defined as freshwater fish resident to Idaho waters. Idaho fish includes all trout, regardless of where acquired, as well
as the following species when caught in an Idaho lake or stream: whitefish, yellow perch, walleye, catfish, bass, bluegill, black

crappie, northern pike, white sturgeon, crayfish, Kokanee Salmon, or Sockeye Salmon (also known as Blueback Salmon):

2 The SAS macros used in the NCI method do not routinely report estimates beyond the 99" percentile of the distribution due to the

inherent uncertainty of this value. This 100" percentile value was generated at the request of IDEQ.



The United States Environmental Protection Agency (USEPA), in collaboration with the Nez Perce and
Shoshone-Bannock Tribes, recently completed a survey of tribal fish consumption (Ridolfi and Pacific
Market Research 2015). Similar methods were used to survey both tribes, and NCI modelling was
conducted using data from both tribes with a tribal identifier used as a covariate in the modelling.
Information from this survey was used by IDEQ to develop FCR distributions for the Nez Perce tribal
population of Idaho. The Nez Perce were chosen to represent the tribal population of Idaho as their
estimated mean FCR is the highest among the tribes. The following is a brief discussion of the Nez Perce
survey report.

Estimates of the FCR, given as edible mass of uncooked finfish and/or shellfish in g/day, are presented
based on two different survey methods resulting in two data sets collected from the same set of
respondents. One set of data is provided by a food frequency questionnaire (FFQ), wherein for each
species survey respondents directly provide estimates of frequency of consumption, portion sizes and
duration of their consumption seasons during the past year. The second method, a statistical method
developed by the National Cancer Institute (“NCI method”), uses responses to questions asked on two
separate days, about fish consumption “yesterday” (a 24-hour recall period).The survey covered adult
members (age 18 and over) of the Nez Perce residing within approximately 50 miles of two major tribal
centers, Lapwai and Kamiah. A stratified (gender, age) random sample was drawn from tribal enrolment
files. Tribal interviewers were employed and trained to administer the questionnaire in person. Interviews
were conducted from May 2014 to May 2015 either at the respondent’s home or an agreed upon location.
Due to the difficulty in locating and contacting sampled members, a survey design change resulted in
interviews and/or initial contacts taking place at special tribal events. The second 24-hour dietary recall
interview was conducted sometime after the first interview by telephone. Respondents were offered an
incentive for participation in the survey, financed by the Tribe, that included a raffle drawing
(approximately $1000 worth of prizes were available), t-shirts and paid time off for Tribal employees who
were sampled. Respondents to the survey answered questions about species consumed (frequency and
quantity), covering consumption over the past year, as well as answering questions about fish
consumption “yesterday” (the 24-hour recall).

The tribe has 2,727 recorded adult members. A sample of 1,250 was drawn but only 38% (460 members)
responded, 98% of whom (451) were fish consumers. Due to differences in the response rate among
demographic subgroups within the Tribe, statistical weighting was used to estimate FCRs so as to be
unbiased and representative of the entire Tribe. The authors described the following limitations of the
study:

e A number of cases had missing data which had to be imputed in order for the respondent’s other
responses to be included. However, they also report that a sensitivity analysis indicates little effect
on FCRs due to imputation.

e With an interview-guided survey, there is a possibility of a social desifability bias, where
individuals tend to over- or under-report consumption due to perceived social norms.

e The survey had a “modest” response rate, 38% which is low.among tribal fish consumption
surveys. Itis possible that those who were either not reached or reached but did not agree to an
interview have different consumption rates than those included.



While the first limitation did not appear to have an effect on the FCRs it is unclear how the second and
third limitations affect FCR. However, given that the Tribe has emphasized the cultural importance of fish,
it is unlikely that under-reporting bias would be an issue.

Ridolfi and Pacific Market Research (2015) reports summary statistics for the empirical NCl-adjusted
distribution of Nez Perce tribal population fish consumption for all fish (i.e., Group 1) and Group 2 fish, a
subset of Group 1. Although species level data were recorded by the interviewers for dietary recall, these
data were not reported or modelled using NCI methods. The mean and each fifth percentile of Group 2
FCR are given in Table 2.

The Nez Perce fish consumption survey data were reported based on different species groupings than the
state-wide Idaho fish consumption survey (Table 3). While the Nez Perce species Group 2 consumption is
more similar to the species group defined as Idaho fish than Group 1, it includes some species excluded
from Idaho fish. Therefore, IDEQ had to derive an adjustment factor to apply to the Group 2 fish
consumption distribution to estimate the Nez Perce Idaho fish consumption distribution. IDEQ derived this
Idaho fish adjustment factor using data from the FFQ. Rather than subtracting species from Group 2,
IDEQ subtracted Chinook, Coho, and other salmon from Group 3; subtracted tilapia from Group 5; and
summed these modified Groups with the existing Group 4. The resulting mean consumption rate,
expressed as a ratio of reported Group 2 fish consumption, is 24.2%. Calculations were done by
respondent and were appropriately weighted by the demographic based statistical weighting variable.
This process is described in greater detail by IDEQ (2015). IDEQ applied the adjustment factor to the
mean and each fifth percentile of the empirical distribution of Nez Perce Group 2 fish consumption to
derive the estimated distribution of Nez Perce Idaho fish consumption (Table 2). Given that NCl-based
Idaho fish FCRs were not reported for the tribes, IDEQ’s approach is appropriate but should have been
conducted using dietary recall data rather than the FFQ data. The FFQ data rely on one’s memory over an
entire year and involve mental averaging over that period. The authors of the survey report state the
following:

“The NCI method results are probably closer to the true consumption rate distribution for the
Tribe, but the FFQ consumption rates are also plausible. The truth probably lies somewhere in
between, though likely closer to the NCI-method rates, which are based on consumption
‘yesterday’ (24-hour recall) rather than on memory of the preceding year’s consumption. (A report
on the OPEN study by Subar et al, 2003, found that 24-hour recall data were more accurate than
FFQ data in predicting total energy and protein intake.)”

Arcadis followed the process outlined by IDEQ (2015) to derive a Group 2 adjustment factor using the Nez
Perce dietary recall data rather than the FFQ data.® The calculations were conducted separately for each
of the two dietary recalls since there were some missing responses for the secondrecall. The NCI
methodology for estimating usual intake distributions for fish consumption rely on the dietary recall data,
and therefore deriving a Group 2 adjustment factor from these data is more appropriate than relying on

3 The dietary recall data were obtained by Arcadis via the expedited Freedom of Information Act process mentionéd in USEPA's

August 6, 2015 presentation given at the IDEQ Negotiated Rulemaking meeting.



the FFQ data*. The mean adjustment factor for the two recall events is 7.04%.5 Arcadis applied the
alternate adjustment factor to the mean and each fifth percentile of the empirical distribution of Nez Perce
Group 2 fish consumption to derive an alternate estimated distribution of Nez Perce Idaho fish
consumption (Table 2). A similar analysis was conducted for the Shoshone-Bannock data set as a check
of the assumption that their mean ldaho fish FCR is not greater than that of the Nez Perce, which would
result in the Shoshone-Bannock Tribe being the more sensitive population. The mean Group 2 FCR for
the Shoshone-Bannock is 18.6 grams per day. The percentage of Group 2 fish that are Idaho fish based
on dietary recall data is 22.8%, resulting in a mean Idaho fish FCR of 4.2 grams per day. Therefore, it can
still be assumed that the Nez Perce Tribe have a higher Idaho fish FCR than the Shoshone-Bannock
Tribe.

3 IDEQ DISTRIBUTION FITTING

Although empirical distributions are available from the abovementioned sources for both Idaho
populations, the software used to conduct probabilistic derivation of HHAWQC (i.e., @Risk; Palisade
[2013]) requires that, in the absence of an empirical dataset, each distribution be described formulaically.
Because the empirical distributions were produced by NCI modelling and individual data points are not
available, theoretical distributions must be “fit” to the empirical distributions to conduct the probabilistic
analysis.

The @Risk software allows users to fit distributions to data using the “Distribution Fitting” tool. This tool
generates numerous potential “fits” to the data (i.e., theoretical distributions with inherent statistics, such
as arithmetic mean and percentiles, comparable to those associated with the empirical data) and ranks
them in order of increasing error. Additional goodness-of-fit tests, such as the chi-square goodness-of-fit
test, can be performed to determine whether the theoretical distribution’s inherent statistics are consistent
with the empirical distribution. The distribution fitting process should focus on the bulk of the distribution
rather than the extreme tails of the distribution. This is particularly true in cases such as the general

4 IDEQ recognized that use of the FFQ is not the preferred data set from which to derive the adjustment factor and that species-
specific data from the dietary recall survey would be preferred as indicated in the footnote to the FCR summary table prepared by
IDEQ for the August 6, 2105 Negotiated Rulemaking meeting: “Because the Idaho FFQ does not provide species level data, Idaho
fish is based on a survey guestion that asks respondents to say what percentage of the fish they ate over the pastyear came from
Idaho waters. It thus includes Chinook and Coho salmon, and likely excludes some rainbow trout purchased rather than caught.
THEREFORE IT IS NOT COMPRABLE TO THE DIETARY RECALL IDAHO FISH GROUP.” (Emphasis-in the original). IDEQ used
the FFQ data to derive the adjustment factor because species-specific data for the Idaho fish group’from the dietary recall survey

were not available to IDEQ at the time they had to develop FCR distributions and derive draft HHAWQC.

5 The survey data included two weighting variables to adjust for missing responses in‘the data. The calculations were.conducted
twice, once for each of the two survey weight variables. The effect on the adjustment factor was minimal. Using the variable

“survey_wtl” resulted in an estimate of 7.03% compared to the adjustmentfactor of 7.04% presented in the text of this report.



population distribution for consumption of Idaho fish, which, as described above in Section 2, has an
extreme upper percentile value that has great uncertainty and appears inconsistent with the remainder of
the distribution.

The distribution fitting approach used by IDEQ for each distribution is discussed below.
3.1 General Population

Rather than fitting a continuous theoretical distribution to the empirical FCR distribution using the @Risk
software, Windward (2015) used linear interpolation to estimate the FCR at each tenth-of-a-percentile
increment and used the resulting empirical and interpolated values in a discrete @Risk distribution,
assigning equal probability to each tenth-of-a-percentile estimate (Appendix A, Figure 1). While the
individual percentiles of the discrete distribution fit the empirical distribution quite well, the arithmetic mean
of the discrete distribution is nearly four times greater than that of the empirical distribution (8.74 g/day
versus 2.34 g/day), driven upward by the inclusion of the estimated 100" percentile value of 1,261 g/day
and the interpolated tenth-of-a-percentile estimates between the 99" and 100" percentiles. In addition,
using linear interpolation between percentiles of a positively skewed distribution increases the likelihood of
less probable values, particularly in the upper tail of the distribution, and therefore is not an ideal method
for estimating between the percentiles of the FCR distribution.

3.2 Nez Perce Tribal Population

As with the general population, Windward (2015) used linear interpolation to estimate the FCR at each
tenth-of-a-percentile increment and used the resulting empirical and interpolated values in a discrete
@Risk distribution, assigning equal probability to each tenth-of-a-percentile estimate (Appendix A,
Figure 2). Ridolfi and Pacific Market Research (2015) only reported every fifth percentile through the 95
because the higher percentiles were considered to be too uncertain to report.® In the absence of such

% The authors noted the following with respect to the upper percentiles of the distribution: “The NCI method as implemented in SAS
software provides integer percentiles of usual consumption rates up to the 99" percentile. However, an analysis of species Grotp 1
and species Group 2 consumption for the NPT (all respondents) showed a lower calculated 99" percentile consumption rate for
Group 1 (373.2 g/day) than for Group 2 (409.6 g/day), even though the nearby 95" percentile values were in the order expected
(232.1 g/day and 221.8 g/day, respectively). The number of respondents in the two analyses was very similar (though small for the
NCI method), and Group 2 is a subset of the species in Group 1 and would be expected to have a smalleytfrue 99" percentile in the
population. However, it is not an error for these two estimated values of the 99" percentiles to be in an unexpected order. These are
both estimates—not population values—for the 99" percentile for each group of species, and—as indicated by the width of the
confidence interval for the 99" percentile for Group 1 (276.2-692.7g/day)—there is a range of plausible values for these kinds of
estimates. Among the plausible estimates for each of the two 99" percentiles, some of the plausible choices will have the 99" in the
expected order (Group 2 having a smaller 99" percentile than Group 1). In order’to avoid confusion in presentation of results, all

NCI-method percentiles for Group 1 and Group 2 have been reported only-Up to the 95" percentile.”



percentiles Windward (2015) assumed the maximum tribal FCR was equal to the 100" percentile Idaho
fish FCR for the general population (i.e., 1,261 g/day), multiplied by the 24.2% adjustment factor for Idaho
fish. This approach is not appropriate for at least two reasons. First, Ridolfi and Pacific Market Research
(2015) evaluated the higher percentiles of tribal consumption and believed those to be too uncertain to
report. Substituting general population FCRs for those percentiles using a highly uncertain maximum
general population FCR contradicts the findings of Ridolfi and Pacific Market Research (2015) and
suggests tribal and general population consumption are interchangeable. Second, the 1,261 g/day FCR
for the general population already represents consumption of Idaho fish. Therefore, the adjustment of
24.2% to estimate the Idaho fish FCR from the tribal Group 2 fish is not necessary for this maximum
value.

While the individual percentiles of the discrete distribution fit the empirical distribution quite well, the
arithmetic mean of the discrete distribution is approximately 20% greater than that of the empirical
distribution (19.2 g/day versus 16.1 g/day), driven upward by the inclusion of a maximum value derived
from the highly uncertain 100" percentile value reported for the general population. The overestimation of
the arithmetic mean is of particular importance for the Nez Perce tribal distribution, because the draft
HHAWQC for the tribal population are derived by targeting the arithmetic mean of the Nez Perce
population. Using a FCR distribution that overestimates the arithmetic mean in a probabilistic approach
that targets the arithmetic mean will result in HHAWQC that are more stringent than warranted based on
the tribal FCR data.

4  ALTERNATIVE DISTRIBUTION FITTING

Arcadis used the same data used by IDEQ to develop FCR distributions for the general and Nez Perce
tribal populations of Idaho. Arcadis fit continuous theoretical curves to the data in @Risk as well as
alternate discrete distributions. This process is described below.

4.1 General Population

After investigating alternative fits to the empirical data using the @Risk “Distribution Fitting” function,
Arcadis found that no single theoretical distribution matched all percentiles of the empirical distribution
well. Therefore, Arcadis used the “RiskSplice” function within @Risk, which enabled Arcadis to fit two
theoretical distributions to the empirical distribution reported by Buckman et al. (2015) — one fitting well to
the lower percentiles (i.e., 0 to 75" and the other fitting well to the upper percentiles (i.e., 76" to’100") —
and combine the two. Samples below the “splice point” (in this case, the 75" percentile) are selected from
the first distribution (a lognormal distribution), and samples above the “splice point” are selected from the
second distribution (an inverse Gaussian distribution). This approach of describing thetail of a distribution
with a separate function is supported by USEPA probabilistic risk assessment guidance (USEPA 2001),
which discusses an example of extending the tails of a distribution using an exponential distribution,
stating that this method is “based on extreme value theory, and the observation that extreme values for
many continuous, unbounded distributions follow an exponential distribution.” The resulting theoretical
distribution provides a close fit to the individual percentiles of the empirical distribution, comparable to
IDEQ'’s discrete distribution, but provides a much closer fit to the arithmetic mean (2.28 g/day.versus 2.34
g/day)(Table 4, Figure 1).



Arcadis also developed two alternate discrete distributions using the empirical data. First, Arcadis used
the empirical percentile values in a discrete @Risk distribution, assigning equal probability to each
empirical percentile value and excluding the highly uncertain 100" percentile responsible for driving up the
arithmetic mean of IDEQ'’s discrete distribution. While the individual percentiles of the discrete distribution
fit the empirical distribution quite well, the arithmetic mean of the discrete distribution is approximately
23% lower than that of the empirical distribution (1.81 g/day versus 2.34 g/day). Next, Arcadis followed the
interpolation approach used by Windward (2015), however instead of using linear interpolation between
each empirical percentile, Arcadis used logarithmic interpolation to estimate the FCR at each tenth-of-a-
percentile increment and used the resulting values in a discrete @Risk distribution, assigning equal
probability to each tenth-of-a-percentile estimate (Appendix A). Again, the individual percentiles of the
discrete distribution fit the empirical distribution quite well, but the arithmetic mean of the distribution is 2.5
times greater than that of the empirical distribution (5.81 g/day versus 2.34 g/day).

These multiple attempts at trying to create a discrete distribution that tries to address the highly uncertain
maximum FCR highlight both the uncertainty of the FCR and its inconsistency with remainder of the FCR
distribution for the general population, as well as the sensitivity of the discrete function to the assumptions
used to interpolate tenths of percentiles between reported percentiles. While it is possible that tenths of
percentiles could eventually be estimated that fit both the percentiles of the FCR distribution and its
arithmetic mean, neither the linear interpolation used to derive the draft HHAWQC nor the logarithmic
interpolation used as an alternative by Arcadis do so. Rather, the combination of two continuous
distributions developed by Arcadis provide the best fit of both the percentiles and arithmetic mean of the
empirical FCR distribution and should be used to derive HHAWQC for Idaho.

4.2 Nez Perce Tribal Population

Arcadis used the @Risk “Distribution Fitting” function to fit a theoretical distribution to the IDEQ estimated
(i.e., based on 24.2% adjustment factor) empirical Nez Perce Idaho fish consumption distribution. The
best fitting single theoretical distribution (i.e., the theoretical distribution with the lowest root mean square
error) was an inverse Gaussian distribution, which provides a close fit to the individual percentiles of the
empirical distribution, comparable to IDEQ’s discrete distribution, but provides a much closer fit to the
arithmetic mean (16.6 g/day versus 16.1 g/day) (Table 5, Figure 2).

Arcadis also used the @Risk “Distribution Fitting” function to fit a theoretical distribution to the alternate
estimated (i.e., based on 7.04% adjustment factor) empirical Nez Perce Idaho fish consumption
distribution. The best fitting single theoretical distribution was an inverse Gaussian distribution, which fits
the empirical percentiles well as well as the arithmetic mean (4.81 g/day versus 4.68 g/day) (Table 6,
Figure 3). This tribal Idaho fish FCR distribution based on the recall survey adjustment factor (7.04%)
should be used to derive HHAWQC for the tribal population in lieu of a distributionbased on the FFQ
(24.2%) because, as noted by the authors of the tribal FCR survey report (Ridolfi and Pacific Market
Research 2015), the recall survey results are likely closer to the true tribal consumption rate than the FFQ
results.

5 CONCLUSION

To derive probabilistically based HHAWQC using @Risk, empirical FCR distributions must be modelled
using theoretical distributions defined within the @Risk software. Windward (2015) used discrete



distributions to model FCR in @Risk, incorporating a highly uncertain 100" percentile FCR estimate
reported by Buckman et al. (2015). This approach results in theoretical distributions that fit the individual
percentiles of the empirical distributions well but overestimate the arithmetic means of the empirical
distributions by nearly a factor of four for the general population and approximately 20% for the Nez Perce
tribal population. While the overestimation of the mean for the general population is the larger of the two,
the overestimation of the mean for the Nez Perce population is of particular practical importance because
IDEQ is targeting the arithmetic mean of the Nez Perce population to derive draft HHAWQC. Using FCR
distributions that overestimate the arithmetic mean results in draft HHAWQC that are more stringent than
warranted based on the tribal FCR data.

In lieu of the discrete distributions used by the draft HHAWQC that overestimate the arithmetic mean of
the empirical FCR data substantially and which require interpolation between existing percentiles with no
basis to determine if the interpolation model is correct, Arcadis recommends that IDEQ use continuous
theoretical curves to model FCR distributions in @Risk when deriving probabilistic HHAWQC. This
approach, as described in detail in Section 4 of this report, results in theoretical distributions that fit the
individual percentiles of the empirical distributions as well as IDEQ’s discrete distribution, but provide a
much closer fit to the arithmetic means. It is crucial that both of these statistics be accurately represented
when developing distributions to derive probabilistic HHAWQC so that risk managers can knowledgeably
and appropriately manage risk for the average member of the population as well as any given percentile.
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Table 1. General Population Empirical Idaho Fish Consumption Distribution

Idaho Fish Idaho Fish
Statistic FCR Statistic FCR
(g/day) (g/day)

Mean 2.34 50% 0.0928
0% 0 51% 0.101
1% 0.00000918 52% 0.111
2% 0.0000377 53% 0.121
3% 0.000078 54% 0.131
4% 0.000131 55% 0.143
5% 0.000196 56% 0.156
6% 0.000277 57% 0.170
7% 0.000371 58% 0.185
8% 0.000484 59% 0.202
9% 0.000617 60% 0.220
10% 0.000766 61% 0.239
11% 0.000951 62% 0.261
12% 0.00116 63% 0.285
13% 0.00140 64% 0.310
14% 0.00167 65% 0.339
15% 0.00199 66% 0.370
16% 0.00234 67% 0.403
17% 0.00273 68% 0.442
18% 0.00317 69% 0.483
19% 0.00366 70% 0.529
20% 0.00420 71% 0.580
21% 0.00480 72% 0.635
22% 0.00545 73% 0.698
23% 0.00618 74% 0.765
24% 0.0070 75% 0.840
25% 0.00791 76% 0.923
26% 0.00891 7% 1.02
27% 0.0100 78% 1.12
28% 0.0112 79% 1.24
29% 0.0125 80% 1.38
30% 0.0140 81% 1.53
31% 0.0156 82% 1.71
32% 0.0173 83% 1.91
33% 0.0191 84% 2.15
34% 0.0212 85% 2.42
35% 0.0234 86% 2.74
36% 0.0258 87% 3.09
37% 0.0285 88% 3.53
38% 0.0313 89% 4.03
39% 0.0345 90% 4.66
40% 0.0379 91% 5.42
41% 0.0415 92% 6.36
42% 0.0455 93% 7.53
43% 0.0500 94% 9.14
44% 0.0546 95% 11.2
45% 0.0597 96% 14.1
46% 0.0653 97% 18.2
47% 0.0714 98% 25.3
48% 0.0780 99% 40.5
49% 0.0852 100% 1261
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Table 2. Nez Perce Empirical Fish Consumption Distributions

IDEQ Estimated Alternate Estimated

Statistic Group 2 Idaho Fish Idaho Fish

FCR (g/day) 2 £
Mean 66.5 16.1 4.68
5% 4.10 0.992 0.289
10% 6.80 1.65 0.479
15% 9.40 2.27 0.662
20% 12.2 2.95 0.859
25% 151 3.65 1.06
30% 18.3 4.43 1.29
35% 21.9 5.30 1.54
40% 26.1 6.32 1.84
45% 30.8 7.45 2.17
50% 36.0 8.71 2.53
55% 42.1 10.2 2.96
60% 49.5 12.0 3.48
65% 58.0 14.0 4.08
70% 68.7 16.6 4.84
75% 81.7 19.8 5.75
80% 98.2 23.8 6.91
85% 122 29.5 8.57
90% 159 38.6 11.2
95% 234 56.6 16.5
Notes:

Both Group 2 to Idaho fish adjustment factors were derived using the process outlined by IDEQ (2015).
a. Estimated as 24.2% of the Group 2 FCR, derived from Nez Perce food frequency questionnaire.
b. Estimated as 7.04% of the Group 2 FCR, derived from the Nez Perce dietary recall data.
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Table 3. Nez Perce Tribal Survey Species Groups

Group Description Species and Groups Included
Group 1 All finfish and shellfish Combination of Groups 3, 4, 5, 6, and 7
Group 2 Near coastal, estuarine, freshwater, and All species in Groups 3, 4, and 5 as well as lobster, crab,
P anadromous shrimp, marine clams or mussels, octopus, and scallops
Group 3 Salmon or steelhead Chinook, coho, sockeye, ko!(gnee, steelhead,' other
salmon, and any unspecified salmon species
. Rainbow, cutthroat, cutbow, bull, brook, lake, brown, other
Group 4 Resident trout o .
trout, and any unspecified trout species.
Lamprey, sturgeon, whitefish, sucker, bass, bluegill, carp,
Group 5 Other freshwater finfish or shellfish catflgh, crappie, sunfish, filapia, walleye, yellow perch,
crayfish, freshwater clams or mussels, other freshwater
finfish, and any unspecified freshwater species
Group 6 Marine finfish or shellfish Cod, halibut, pollopk, tuna, Iobstgr, cr_ab, marine glams or
mussels, shrimp, other marine fish, or shellfish
e e ] Any response where the species was not specified
Group 7 Unspecified finfish or shellfish sufficiently to be placed into Groups 3, 4, 5, or 6
Notes:

Species underlined in Groups 2 through 5 are not considered Idaho fish (IDEQ 2015).
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Table 4. General Population Alternate Theoretical Distribution

Empirical Continuous Theoretical
Statistic Idaho Fish Idaho Fish
FCR (g/day) FCR (g/day)?
Mean 2.34 2.28
1% 0.00000918 0.00003814
5% 0.000196 0.000326
10% 0.000766 0.00107
15% 0.00199 0.00244
20% 0.00420 0.00473
25% 0.00791 0.00837
30% 0.0140 0.0140
35% 0.0234 0.0226
40% 0.0379 0.0356
45% 0.0597 0.0552
50% 0.0928 0.0851
55% 0.143 0.131
60% 0.220 0.203
65% 0.339 0.319
70% 0.529 0.511
75% 0.840 0.847
80% 1.38 1.43
85% 2.42 2.48
90% 4.66 4.70
95% 11.2 11.3
99% 405 44.2
Notes:

a. This continuous theoretical distribution fits the arithmetic mean of the empirical distribution better than the IDEQ
discrete theoretical distribution.

@Risk formula: =RiskSplice(RiskLognorm(49.066,27171.1,RiskShift(-
0.0000285067),RiskTruncate(0.0000285067)),Riskinvgauss(2.698,0.19327,RiskShift(-
0.49512),RiskTruncate(0.49512)),0.84)
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Table 5. Nez Perce Alternate Theoretical Distribution for IDEQ Estimated Idaho Fish

IDEQ Estimated Continuous Theoretical
Statistic Empirical Idaho Fish Idaho Fish
FCR (g/day) FCR (g/day)®

Mean

5% 0.992 1.01
10% 1.65 1.72
15% 2.27 2.40
20% 2.95 3.09
25% 3.65 3.82
30% 4.43 4.61
35% 5.30 5.47
40% 6.32 6.44
45% 7.45 7.53
50% 8.71 8.78
55% 10.2 10.2
60% 12.0 12.0
65% 14.0 14.0
70% 16.6 16.6
75% 19.8 19.8
80% 23.8 24.2
85% 29.5 30.3
90% 38.6 39.9
95% 56.6 58.7
Notes:

a. This continuous theoretical distribution fits the arithmetic mean of the empirical distribution better than the IDEQ discrete
theoretical distribution.
@Risk formula: =Risklnvgauss(17.802,10.944,RiskShift(-1.3888),RiskTruncate(1.3888))
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Table 6. Nez Perce Theoretical Distribution for Alternate Estimated Idaho Fish

Alternate Estimated | Continuous Theoretical

Statistic Empirical Idaho Fish Idaho Fish

FCR (g/day) FCR (g/day)®
Mean 4.67 4.82
5% 0.288 0.294
10% 0.478 0.502
15% 0.661 0.699
20% 0.858 0.899
25% 1.06 1.11
30% 1.29 1.34
35% 1.54 1.59
40% 1.83 1.87
45% 2.17 2.19
50% 2.53 2.56
55% 2.96 2.98
60% 3.48 3.48
65% 4.08 4.08
70% 4.83 4.82
75% 5.74 5.77
80% 6.90 7.03
85% 8.56 8.80
90% 11.2 11.6
95% 16.4 17.1
Notes:

a. @Risk formula: =Riskinvgauss(5.1782,3.1855,RiskShift(-0.40434),RiskTruncate(0.40434))
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis

Mean -- 8.47 arithmetic mean of discrete distribution

0% 0.0999% 0 estimate from Buckman et al. (2015) using the NCI method
0.1% 0.0999% 0.000000918 linear interpolation

0.2% 0.0999% 0.00000184 linear interpolation

0.3% 0.0999% 0.00000275 linear interpolation

0.4% 0.0999% 0.00000367 linear interpolation

0.5% 0.0999% 0.00000459 linear interpolation

0.6% 0.0999% 0.00000551 linear interpolation

0.7% 0.0999% 0.00000642 linear interpolation

0.8% 0.0999% 0.00000734 linear interpolation

0.9% 0.0999% 0.00000826 linear interpolation

1.0% 0.0999% 0.00000918 estimate from Buckman et al. (2015) using the NCI method
1.1% 0.0999% 0.0000120 linear interpolation

1.2% 0.0999% 0.0000149 linear interpolation

1.3% 0.0999% 0.0000177 linear interpolation

1.4% 0.0999% 0.0000206 linear interpolation

1.5% 0.0999% 0.0000234 linear interpolation

1.6% 0.0999% 0.0000263 linear interpolation

1.7% 0.0999% 0.0000291 linear interpolation

1.8% 0.0999% 0.0000320 linear interpolation

1.9% 0.0999% 0.0000348 linear interpolation

2.0% 0.0999% 0.0000377 estimate from Buckman et al. (2015) using the NCI method
2.1% 0.0999% 0.0000417 linear interpolation

2.2% 0.0999% 0.0000458 linear interpolation

2.3% 0.0999% 0.0000498 linear interpolation

2.4% 0.0999% 0.0000538 linear interpolation

2.5% 0.0999% 0.0000579 linear interpolation

2.6% 0.0999% 0.0000619 linear interpolation

2.7% 0.0999% 0.0000659 linear interpolation

2.8% 0.0999% 0.0000700 linear interpolation

2.9% 0.0999% 0.0000740 linear interpolation

3.0% 0.0999% 0.0000780 estimate from Buckman et al. (2015) using the NCI method
3.1% 0.0999% 0.0000834 linear interpolation

3.2% 0.0999% 0.0000887 linear interpolation

3.3% 0.0999% 0.0000941 linear interpolation

3.4% 0.0999% 0.0000994 linear interpolation

3.5% 0.0999% 0.000105 linear interpolation

3.6% 0.0999% 0.000110 linear interpolation

3.7% 0.0999% 0.000115 linear interpolation

3.8% 0.0999% 0.000121 linear interpolation

3.9% 0.0999% 0.000126 linear interpolation

4.0% 0.0999% 0.000131 estimate from Buckman et al. (2015) using the NCI method
4.1% 0.0999% 0.000138 linear interpolation

4.2% 0.0999% 0.000144 linear interpolation

4.3% 0.0999% 0.000151 linear interpolation

4.4% 0.0999% 0.000157 linear interpolation

4.5% 0.0999% 0.000164 linear interpolation

4.6% 0.0999% 0.000170 linear interpolation

4.7% 0.0999% 0.000177 linear interpolation

4.8% 0.0999% 0.000183 linear interpolation

4.9% 0.0999% 0.000189 linear interpolation

5.0% 0.0999% 0.000196 estimate from Buckman et al. (2015) using the NCI method
5.1% 0.0999% 0.000204 linear interpolation

5.2% 0.0999% 0.000212 linear interpolation

5.3% 0.0999% 0.000220 linear interpolation

5.4% 0.0999% 0.000228 linear interpolation

5.5% 0.0999% 0.000236 linear interpolation

5.6% 0.0999% 0.000245 linear interpolation

5.7% 0.0999% 0.000253 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
5.8% 0.0999% 0.000261 linear interpolation
5.9% 0.0999% 0.000269 linear interpolation
6.0% 0.0999% 0.000277 estimate from Buckman et al. (2015) using the NCI method
6.1% 0.0999% 0.000286 linear interpolation
6.2% 0.0999% 0.000296 linear interpolation
6.3% 0.0999% 0.000305 linear interpolation
6.4% 0.0999% 0.000315 linear interpolation
6.5% 0.0999% 0.000324 linear interpolation
6.6% 0.0999% 0.000333 linear interpolation
6.7% 0.0999% 0.000343 linear interpolation
6.8% 0.0999% 0.000352 linear interpolation
6.9% 0.0999% 0.000362 linear interpolation
7.0% 0.0999% 0.000371 estimate from Buckman et al. (2015) using the NCI method
7.1% 0.0999% 0.000382 linear interpolation
7.2% 0.0999% 0.000394 linear interpolation
7.3% 0.0999% 0.000405 linear interpolation
7.4% 0.0999% 0.000416 linear interpolation
7.5% 0.0999% 0.000428 linear interpolation
7.6% 0.0999% 0.000439 linear interpolation
7.7% 0.0999% 0.000450 linear interpolation
7.8% 0.0999% 0.000461 linear interpolation
7.9% 0.0999% 0.000473 linear interpolation
8.0% 0.0999% 0.000484 estimate from Buckman et al. (2015) using the NCI method
8.1% 0.0999% 0.000497 linear interpolation
8.2% 0.0999% 0.000511 linear interpolation
8.3% 0.0999% 0.000524 linear interpolation
8.4% 0.0999% 0.000537 linear interpolation
8.5% 0.0999% 0.000551 linear interpolation
8.6% 0.0999% 0.000564 linear interpolation
8.7% 0.0999% 0.000577 linear interpolation
8.8% 0.0999% 0.000590 linear interpolation
8.9% 0.0999% 0.000604 linear interpolation
9.0% 0.0999% 0.000617 estimate from Buckman et al. (2015) using the NCI method
9.1% 0.0999% 0.000632 linear interpolation
9.2% 0.0999% 0.000647 linear interpolation
9.3% 0.0999% 0.000662 linear interpolation
9.4% 0.0999% 0.000677 linear interpolation
9.5% 0.0999% 0.000692 linear interpolation
9.6% 0.0999% 0.000706 linear interpolation
9.7% 0.0999% 0.000721 linear interpolation
9.8% 0.0999% 0.000736 linear interpolation
9.9% 0.0999% 0.000751 linear interpolation
10.0% 0.0999% 0.000766 estimate from Buckman et al. (2015) using the NCI method
10.1% 0.0999% 0.000785 linear interpolation
10.2% 0.0999% 0.000803 linear interpolation
10.3% 0.0999% 0.000822 linear interpolation
10.4% 0.0999% 0.000840 linear interpolation
10.5% 0.0999% 0.000859 linear interpolation
10.6% 0.0999% 0.000877 linear interpolation
10.7% 0.0999% 0.000896 linear interpolation
10.8% 0.0999% 0.000914 linear interpolation
10.9% 0.0999% 0.000933 linear interpolation
11.0% 0.0999% 0.000951 estimate from Buckman et al. (2015) using the NCI method
11.1% 0.0999% 0.000972 linear interpolation
11.2% 0.0999% 0.000993 linear interpolation
11.3% 0.0999% 0.00101 linear interpolation

Page 2 of 18



Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
11.4% 0.0999% 0.00104 linear interpolation
11.5% 0.0999% 0.00106 linear interpolation
11.6% 0.0999% 0.00108 linear interpolation
11.7% 0.0999% 0.00110 linear interpolation
11.8% 0.0999% 0.00112 linear interpolation
11.9% 0.0999% 0.00114 linear interpolation
12.0% 0.0999% 0.00116 estimate from Buckman et al. (2015) using the NCI method
12.1% 0.0999% 0.00119 linear interpolation
12.2% 0.0999% 0.00121 linear interpolation
12.3% 0.0999% 0.00123 linear interpolation
12.4% 0.0999% 0.00126 linear interpolation
12.5% 0.0999% 0.00128 linear interpolation
12.6% 0.0999% 0.00131 linear interpolation
12.7% 0.0999% 0.00133 linear interpolation
12.8% 0.0999% 0.00135 linear interpolation
12.9% 0.0999% 0.00138 linear interpolation
13.0% 0.0999% 0.00140 estimate from Buckman et al. (2015) using the NCI method
13.1% 0.0999% 0.00143 linear interpolation
13.2% 0.0999% 0.00146 linear interpolation
13.3% 0.0999% 0.00148 linear interpolation
13.4% 0.0999% 0.00151 linear interpolation
13.5% 0.0999% 0.00154 linear interpolation
13.6% 0.0999% 0.00156 linear interpolation
13.7% 0.0999% 0.00159 linear interpolation
13.8% 0.0999% 0.00162 linear interpolation
13.9% 0.0999% 0.00165 linear interpolation
14.0% 0.0999% 0.00167 estimate from Buckman et al. (2015) using the NCI method
14.1% 0.0999% 0.00171 linear interpolation
14.2% 0.0999% 0.00174 linear interpolation
14.3% 0.0999% 0.00177 linear interpolation
14.4% 0.0999% 0.00180 linear interpolation
14.5% 0.0999% 0.00183 linear interpolation
14.6% 0.0999% 0.00186 linear interpolation
14.7% 0.0999% 0.00189 linear interpolation
14.8% 0.0999% 0.00192 linear interpolation
14.9% 0.0999% 0.00195 linear interpolation
15.0% 0.0999% 0.00199 estimate from Buckman et al. (2015) using the NCI method
15.1% 0.0999% 0.00202 linear interpolation
15.2% 0.0999% 0.00206 linear interpolation
15.3% 0.0999% 0.00209 linear interpolation
15.4% 0.0999% 0.00213 linear interpolation
15.5% 0.0999% 0.00216 linear interpolation
15.6% 0.0999% 0.00220 linear interpolation
15.7% 0.0999% 0.00223 linear interpolation
15.8% 0.0999% 0.00227 linear interpolation
15.9% 0.0999% 0.00230 linear interpolation
16.0% 0.0999% 0.00234 estimate from Buckman et al. (2015) using the NCI method
16.1% 0.0999% 0.00238 linear interpolation
16.2% 0.0999% 0.00242 linear interpolation
16.3% 0.0999% 0.00246 linear interpolation
16.4% 0.0999% 0.00250 linear interpolation
16.5% 0.0999% 0.00254 linear interpolation
16.6% 0.0999% 0.00258 linear interpolation
16.7% 0.0999% 0.00262 linear interpolation
16.8% 0.0999% 0.00266 linear interpolation
16.9% 0.0999% 0.00269 linear interpolation
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Percentile Discrete Probability FCR (g/day) Basis
17.0% 0.0999% 0.00273 estimate from Buckman et al. (2015) using the NCI method
17.1% 0.0999% 0.00278 linear interpolation
17.2% 0.0999% 0.00282 linear interpolation
17.3% 0.0999% 0.00286 linear interpolation
17.4% 0.0999% 0.00291 linear interpolation
17.5% 0.0999% 0.00295 linear interpolation
17.6% 0.0999% 0.00299 linear interpolation
17.7% 0.0999% 0.00304 linear interpolation
17.8% 0.0999% 0.00308 linear interpolation
17.9% 0.0999% 0.00312 linear interpolation
18.0% 0.0999% 0.00317 estimate from Buckman et al. (2015) using the NCI method
18.1% 0.0999% 0.00322 linear interpolation
18.2% 0.0999% 0.00327 linear interpolation
18.3% 0.0999% 0.00331 linear interpolation
18.4% 0.0999% 0.00336 linear interpolation
18.5% 0.0999% 0.00341 linear interpolation
18.6% 0.0999% 0.00346 linear interpolation
18.7% 0.0999% 0.00351 linear interpolation
18.8% 0.0999% 0.00356 linear interpolation
18.9% 0.0999% 0.00361 linear interpolation
19.0% 0.0999% 0.00366 estimate from Buckman et al. (2015) using the NCI method
19.1% 0.0999% 0.00371 linear interpolation
19.2% 0.0999% 0.00377 linear interpolation
19.3% 0.0999% 0.00382 linear interpolation
19.4% 0.0999% 0.00388 linear interpolation
19.5% 0.0999% 0.00393 linear interpolation
19.6% 0.0999% 0.00399 linear interpolation
19.7% 0.0999% 0.00404 linear interpolation
19.8% 0.0999% 0.00409 linear interpolation
19.9% 0.0999% 0.00415 linear interpolation
20.0% 0.0999% 0.00420 estimate from Buckman et al. (2015) using the NCI method
20.1% 0.0999% 0.00426 linear interpolation
20.2% 0.0999% 0.00432 linear interpolation
20.3% 0.0999% 0.00438 linear interpolation
20.4% 0.0999% 0.00444 linear interpolation
20.5% 0.0999% 0.00450 linear interpolation
20.6% 0.0999% 0.00456 linear interpolation
20.7% 0.0999% 0.00462 linear interpolation
20.8% 0.0999% 0.00468 linear interpolation
20.9% 0.0999% 0.00474 linear interpolation
21.0% 0.0999% 0.00480 estimate from Buckman et al. (2015) using the NCI method
21.1% 0.0999% 0.00487 linear interpolation
21.2% 0.0999% 0.00493 linear interpolation
21.3% 0.0999% 0.00500 linear interpolation
21.4% 0.0999% 0.00506 linear interpolation
21.5% 0.0999% 0.00513 linear interpolation
21.6% 0.0999% 0.00519 linear interpolation
21.7% 0.0999% 0.00526 linear interpolation
21.8% 0.0999% 0.00532 linear interpolation
21.9% 0.0999% 0.00539 linear interpolation
22.0% 0.0999% 0.00545 estimate from Buckman et al. (2015) using the NCI method
22.1% 0.0999% 0.00553 linear interpolation
22.2% 0.0999% 0.00560 linear interpolation
22.3% 0.0999% 0.00567 linear interpolation
22.4% 0.0999% 0.00574 linear interpolation
22.5% 0.0999% 0.00582 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
22.6% 0.0999% 0.00589 linear interpolation
22.7% 0.0999% 0.00596 linear interpolation
22.8% 0.0999% 0.00603 linear interpolation
22.9% 0.0999% 0.00610 linear interpolation
23.0% 0.0999% 0.00618 estimate from Buckman et al. (2015) using the NCI method
23.1% 0.0999% 0.00626 linear interpolation
23.2% 0.0999% 0.00634 linear interpolation
23.3% 0.0999% 0.00642 linear interpolation
23.4% 0.0999% 0.00651 linear interpolation
23.5% 0.0999% 0.00659 linear interpolation
23.6% 0.0999% 0.00667 linear interpolation
23.7% 0.0999% 0.00675 linear interpolation
23.8% 0.0999% 0.00684 linear interpolation
23.9% 0.0999% 0.00692 linear interpolation
24.0% 0.0999% 0.00700 estimate from Buckman et al. (2015) using the NCI method
24.1% 0.0999% 0.00709 linear interpolation
24.2% 0.0999% 0.00718 linear interpolation
24.3% 0.0999% 0.00727 linear interpolation
24.4% 0.0999% 0.00736 linear interpolation
24.5% 0.0999% 0.00746 linear interpolation
24.6% 0.0999% 0.00755 linear interpolation
24.7% 0.0999% 0.00764 linear interpolation
24.8% 0.0999% 0.00773 linear interpolation
24.9% 0.0999% 0.00782 linear interpolation
25.0% 0.0999% 0.00791 estimate from Buckman et al. (2015) using the NCI method
25.1% 0.0999% 0.00801 linear interpolation
25.2% 0.0999% 0.00811 linear interpolation
25.3% 0.0999% 0.00821 linear interpolation
25.4% 0.0999% 0.00831 linear interpolation
25.5% 0.0999% 0.00841 linear interpolation
25.6% 0.0999% 0.00851 linear interpolation
25.7% 0.0999% 0.00861 linear interpolation
25.8% 0.0999% 0.00871 linear interpolation
25.9% 0.0999% 0.00881 linear interpolation
26.0% 0.0999% 0.00891 estimate from Buckman et al. (2015) using the NCI method
26.1% 0.0999% 0.00902 linear interpolation
26.2% 0.0999% 0.00913 linear interpolation
26.3% 0.0999% 0.00924 linear interpolation
26.4% 0.0999% 0.00935 linear interpolation
26.5% 0.0999% 0.00946 linear interpolation
26.6% 0.0999% 0.00956 linear interpolation
26.7% 0.0999% 0.00967 linear interpolation
26.8% 0.0999% 0.00978 linear interpolation
26.9% 0.0999% 0.00989 linear interpolation
27.0% 0.0999% 0.0100 estimate from Buckman et al. (2015) using the NCI method
27.1% 0.0999% 0.0101 linear interpolation
27.2% 0.0999% 0.0102 linear interpolation
27.3% 0.0999% 0.0104 linear interpolation
27.4% 0.0999% 0.0105 linear interpolation
27.5% 0.0999% 0.0106 linear interpolation
27.6% 0.0999% 0.0107 linear interpolation
27.7% 0.0999% 0.0109 linear interpolation
27.8% 0.0999% 0.0110 linear interpolation
27.9% 0.0999% 0.0111 linear interpolation
28.0% 0.0999% 0.0112 estimate from Buckman et al. (2015) using the NCI method
28.1% 0.0999% 0.0114 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
28.2% 0.0999% 0.0115 linear interpolation
28.3% 0.0999% 0.0116 linear interpolation
28.4% 0.0999% 0.0118 linear interpolation
28.5% 0.0999% 0.0119 linear interpolation
28.6% 0.0999% 0.0120 linear interpolation
28.7% 0.0999% 0.0121 linear interpolation
28.8% 0.0999% 0.0123 linear interpolation
28.9% 0.0999% 0.0124 linear interpolation
29.0% 0.0999% 0.0125 estimate from Buckman et al. (2015) using the NCI method
29.1% 0.0999% 0.0127 linear interpolation
29.2% 0.0999% 0.0128 linear interpolation
29.3% 0.0999% 0.0130 linear interpolation
29.4% 0.0999% 0.0131 linear interpolation
29.5% 0.0999% 0.0133 linear interpolation
29.6% 0.0999% 0.0134 linear interpolation
29.7% 0.0999% 0.0136 linear interpolation
29.8% 0.0999% 0.0137 linear interpolation
29.9% 0.0999% 0.0139 linear interpolation
30.0% 0.0999% 0.0140 estimate from Buckman et al. (2015) using the NCI method
30.1% 0.0999% 0.0142 linear interpolation
30.2% 0.0999% 0.0143 linear interpolation
30.3% 0.0999% 0.0145 linear interpolation
30.4% 0.0999% 0.0146 linear interpolation
30.5% 0.0999% 0.0148 linear interpolation
30.6% 0.0999% 0.0149 linear interpolation
30.7% 0.0999% 0.0151 linear interpolation
30.8% 0.0999% 0.0152 linear interpolation
30.9% 0.0999% 0.0154 linear interpolation
31.0% 0.0999% 0.0156 estimate from Buckman et al. (2015) using the NCI method
31.1% 0.0999% 0.0157 linear interpolation
31.2% 0.0999% 0.0159 linear interpolation
31.3% 0.0999% 0.0161 linear interpolation
31.4% 0.0999% 0.0163 linear interpolation
31.5% 0.0999% 0.0164 linear interpolation
31.6% 0.0999% 0.0166 linear interpolation
31.7% 0.0999% 0.0168 linear interpolation
31.8% 0.0999% 0.0170 linear interpolation
31.9% 0.0999% 0.0171 linear interpolation
32.0% 0.0999% 0.0173 estimate from Buckman et al. (2015) using the NCI method
32.1% 0.0999% 0.0175 linear interpolation
32.2% 0.0999% 0.0177 linear interpolation
32.3% 0.0999% 0.0178 linear interpolation
32.4% 0.0999% 0.0180 linear interpolation
32.5% 0.0999% 0.0182 linear interpolation
32.6% 0.0999% 0.0184 linear interpolation
32.7% 0.0999% 0.0185 linear interpolation
32.8% 0.0999% 0.0187 linear interpolation
32.9% 0.0999% 0.0189 linear interpolation
33.0% 0.0999% 0.0191 estimate from Buckman et al. (2015) using the NCI method
33.1% 0.0999% 0.0193 linear interpolation
33.2% 0.0999% 0.0195 linear interpolation
33.3% 0.0999% 0.0197 linear interpolation
33.4% 0.0999% 0.0199 linear interpolation
33.5% 0.0999% 0.0201 linear interpolation
33.6% 0.0999% 0.0203 linear interpolation
33.7% 0.0999% 0.0206 linear interpolation
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Percentile Discrete Probability FCR (g/day) Basis
33.8% 0.0999% 0.0208 linear interpolation
33.9% 0.0999% 0.0210 linear interpolation
34.0% 0.0999% 0.0212 estimate from Buckman et al. (2015) using the NCI method
34.1% 0.0999% 0.0214 linear interpolation
34.2% 0.0999% 0.0216 linear interpolation
34.3% 0.0999% 0.0219 linear interpolation
34.4% 0.0999% 0.0221 linear interpolation
34.5% 0.0999% 0.0223 linear interpolation
34.6% 0.0999% 0.0225 linear interpolation
34.7% 0.0999% 0.0227 linear interpolation
34.8% 0.0999% 0.0230 linear interpolation
34.9% 0.0999% 0.0232 linear interpolation
35.0% 0.0999% 0.0234 estimate from Buckman et al. (2015) using the NCI method
35.1% 0.0999% 0.0237 linear interpolation
35.2% 0.0999% 0.0239 linear interpolation
35.3% 0.0999% 0.0241 linear interpolation
35.4% 0.0999% 0.0244 linear interpolation
35.5% 0.0999% 0.0246 linear interpolation
35.6% 0.0999% 0.0248 linear interpolation
35.7% 0.0999% 0.0251 linear interpolation
35.8% 0.0999% 0.0253 linear interpolation
35.9% 0.0999% 0.0255 linear interpolation
36.0% 0.0999% 0.0258 estimate from Buckman et al. (2015) using the NCI method
36.1% 0.0999% 0.0261 linear interpolation
36.2% 0.0999% 0.0263 linear interpolation
36.3% 0.0999% 0.0266 linear interpolation
36.4% 0.0999% 0.0269 linear interpolation
36.5% 0.0999% 0.0271 linear interpolation
36.6% 0.0999% 0.0274 linear interpolation
36.7% 0.0999% 0.0277 linear interpolation
36.8% 0.0999% 0.0279 linear interpolation
36.9% 0.0999% 0.0282 linear interpolation
37.0% 0.0999% 0.0285 estimate from Buckman et al. (2015) using the NCI method
37.1% 0.0999% 0.0288 linear interpolation
37.2% 0.0999% 0.0291 linear interpolation
37.3% 0.0999% 0.0293 linear interpolation
37.4% 0.0999% 0.0296 linear interpolation
37.5% 0.0999% 0.0299 linear interpolation
37.6% 0.0999% 0.0302 linear interpolation
37.7% 0.0999% 0.0305 linear interpolation
37.8% 0.0999% 0.0308 linear interpolation
37.9% 0.0999% 0.0310 linear interpolation
38.0% 0.0999% 0.0313 estimate from Buckman et al. (2015) using the NCI method
38.1% 0.0999% 0.0316 linear interpolation
38.2% 0.0999% 0.0320 linear interpolation
38.3% 0.0999% 0.0323 linear interpolation
38.4% 0.0999% 0.0326 linear interpolation
38.5% 0.0999% 0.0329 linear interpolation
38.6% 0.0999% 0.0332 linear interpolation
38.7% 0.0999% 0.0335 linear interpolation
38.8% 0.0999% 0.0338 linear interpolation
38.9% 0.0999% 0.0342 linear interpolation
39.0% 0.0999% 0.0345 estimate from Buckman et al. (2015) using the NCI method
39.1% 0.0999% 0.0348 linear interpolation
39.2% 0.0999% 0.0352 linear interpolation
39.3% 0.0999% 0.0355 linear interpolation
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39.4% 0.0999% 0.0358 linear interpolation
39.5% 0.0999% 0.0362 linear interpolation
39.6% 0.0999% 0.0365 linear interpolation
39.7% 0.0999% 0.0369 linear interpolation
39.8% 0.0999% 0.0372 linear interpolation
39.9% 0.0999% 0.0375 linear interpolation
40.0% 0.0999% 0.0379 estimate from Buckman et al. (2015) using the NCI method
40.1% 0.0999% 0.0382 linear interpolation
40.2% 0.0999% 0.0386 linear interpolation
40.3% 0.0999% 0.0390 linear interpolation
40.4% 0.0999% 0.0393 linear interpolation
40.5% 0.0999% 0.0397 linear interpolation
40.6% 0.0999% 0.0400 linear interpolation
40.7% 0.0999% 0.0404 linear interpolation
40.8% 0.0999% 0.0408 linear interpolation
40.9% 0.0999% 0.0411 linear interpolation
41.0% 0.0999% 0.0415 estimate from Buckman et al. (2015) using the NCI method
41.1% 0.0999% 0.0419 linear interpolation
41.2% 0.0999% 0.0423 linear interpolation
41.3% 0.0999% 0.0427 linear interpolation
41.4% 0.0999% 0.0431 linear interpolation
41.5% 0.0999% 0.0435 linear interpolation
41.6% 0.0999% 0.0439 linear interpolation
41.7% 0.0999% 0.0443 linear interpolation
41.8% 0.0999% 0.0447 linear interpolation
41.9% 0.0999% 0.0451 linear interpolation
42.0% 0.0999% 0.0455 estimate from Buckman et al. (2015) using the NCI method
42.1% 0.0999% 0.0460 linear interpolation
42.2% 0.0999% 0.0464 linear interpolation
42.3% 0.0999% 0.0469 linear interpolation
42.4% 0.0999% 0.0473 linear interpolation
42.5% 0.0999% 0.0477 linear interpolation
42.6% 0.0999% 0.0482 linear interpolation
42.7% 0.0999% 0.0486 linear interpolation
42.8% 0.0999% 0.0491 linear interpolation
42.9% 0.0999% 0.0495 linear interpolation
43.0% 0.0999% 0.0500 estimate from Buckman et al. (2015) using the NCI method
43.1% 0.0999% 0.0504 linear interpolation
43.2% 0.0999% 0.0509 linear interpolation
43.3% 0.0999% 0.0514 linear interpolation
43.4% 0.0999% 0.0518 linear interpolation
43.5% 0.0999% 0.0523 linear interpolation
43.6% 0.0999% 0.0528 linear interpolation
43.7% 0.0999% 0.0532 linear interpolation
43.8% 0.0999% 0.0537 linear interpolation
43.9% 0.0999% 0.0541 linear interpolation
44.0% 0.0999% 0.0546 estimate from Buckman et al. (2015) using the NCI method
44.1% 0.0999% 0.0551 linear interpolation
44.2% 0.0999% 0.0556 linear interpolation
44.3% 0.0999% 0.0561 linear interpolation
44.4% 0.0999% 0.0567 linear interpolation
44.5% 0.0999% 0.0572 linear interpolation
44.6% 0.0999% 0.0577 linear interpolation
44.7% 0.0999% 0.0582 linear interpolation
44.8% 0.0999% 0.0587 linear interpolation
44.9% 0.0999% 0.0592 linear interpolation
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Percentile Discrete Probability FCR (g/day) Basis
45.0% 0.0999% 0.0597 estimate from Buckman et al. (2015) using the NCI method
45.1% 0.0999% 0.0603 linear interpolation
45.2% 0.0999% 0.0609 linear interpolation
45.3% 0.0999% 0.0614 linear interpolation
45.4% 0.0999% 0.0620 linear interpolation
45.5% 0.0999% 0.0625 linear interpolation
45.6% 0.0999% 0.0631 linear interpolation
45.7% 0.0999% 0.0636 linear interpolation
45.8% 0.0999% 0.0642 linear interpolation
45.9% 0.0999% 0.0647 linear interpolation
46.0% 0.0999% 0.0653 estimate from Buckman et al. (2015) using the NCI method
46.1% 0.0999% 0.0659 linear interpolation
46.2% 0.0999% 0.0665 linear interpolation
46.3% 0.0999% 0.0671 linear interpolation
46.4% 0.0999% 0.0677 linear interpolation
46.5% 0.0999% 0.0683 linear interpolation
46.6% 0.0999% 0.0689 linear interpolation
46.7% 0.0999% 0.0695 linear interpolation
46.8% 0.0999% 0.0702 linear interpolation
46.9% 0.0999% 0.0708 linear interpolation
47.0% 0.0999% 0.0714 estimate from Buckman et al. (2015) using the NCI method
47.1% 0.0999% 0.0720 linear interpolation
47.2% 0.0999% 0.0727 linear interpolation
47.3% 0.0999% 0.0734 linear interpolation
47.4% 0.0999% 0.0740 linear interpolation
47.5% 0.0999% 0.0747 linear interpolation
47.6% 0.0999% 0.0754 linear interpolation
47.7% 0.0999% 0.0760 linear interpolation
47.8% 0.0999% 0.0767 linear interpolation
47.9% 0.0999% 0.0774 linear interpolation
48.0% 0.0999% 0.0780 estimate from Buckman et al. (2015) using the NCI method
48.1% 0.0999% 0.0788 linear interpolation
48.2% 0.0999% 0.0795 linear interpolation
48.3% 0.0999% 0.0802 linear interpolation
48.4% 0.0999% 0.0809 linear interpolation
48.5% 0.0999% 0.0816 linear interpolation
48.6% 0.0999% 0.0823 linear interpolation
48.7% 0.0999% 0.0831 linear interpolation
48.8% 0.0999% 0.0838 linear interpolation
48.9% 0.0999% 0.0845 linear interpolation
49.0% 0.0999% 0.0852 estimate from Buckman et al. (2015) using the NCI method
49.1% 0.0999% 0.0860 linear interpolation
49.2% 0.0999% 0.0867 linear interpolation
49.3% 0.0999% 0.0875 linear interpolation
49.4% 0.0999% 0.0883 linear interpolation
49.5% 0.0999% 0.0890 linear interpolation
49.6% 0.0999% 0.0898 linear interpolation
49.7% 0.0999% 0.0905 linear interpolation
49.8% 0.0999% 0.0913 linear interpolation
49.9% 0.0999% 0.0921 linear interpolation
50.0% 0.0999% 0.0928 estimate from Buckman et al. (2015) using the NCI method
50.1% 0.0999% 0.0937 linear interpolation
50.2% 0.0999% 0.0945 linear interpolation
50.3% 0.0999% 0.0954 linear interpolation
50.4% 0.0999% 0.0963 linear interpolation
50.5% 0.0999% 0.0971 linear interpolation
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50.6% 0.0999% 0.0980 linear interpolation
50.7% 0.0999% 0.0988 linear interpolation
50.8% 0.0999% 0.0997 linear interpolation
50.9% 0.0999% 0.101 linear interpolation
51.0% 0.0999% 0.101 estimate from Buckman et al. (2015) using the NCI method
51.1% 0.0999% 0.102 linear interpolation
51.2% 0.0999% 0.103 linear interpolation
51.3% 0.0999% 0.104 linear interpolation
51.4% 0.0999% 0.105 linear interpolation
51.5% 0.0999% 0.106 linear interpolation
51.6% 0.0999% 0.107 linear interpolation
51.7% 0.0999% 0.108 linear interpolation
51.8% 0.0999% 0.109 linear interpolation
51.9% 0.0999% 0.110 linear interpolation
52.0% 0.0999% 0.111 estimate from Buckman et al. (2015) using the NCI method
52.1% 0.0999% 0.112 linear interpolation
52.2% 0.0999% 0.113 linear interpolation
52.3% 0.0999% 0.114 linear interpolation
52.4% 0.0999% 0.115 linear interpolation
52.5% 0.0999% 0.116 linear interpolation
52.6% 0.0999% 0.117 linear interpolation
52.7% 0.0999% 0.118 linear interpolation
52.8% 0.0999% 0.119 linear interpolation
52.9% 0.0999% 0.120 linear interpolation
53.0% 0.0999% 0.121 estimate from Buckman et al. (2015) using the NCI method
53.1% 0.0999% 0.122 linear interpolation
53.2% 0.0999% 0.123 linear interpolation
53.3% 0.0999% 0.124 linear interpolation
53.4% 0.0999% 0.125 linear interpolation
53.5% 0.0999% 0.126 linear interpolation
53.6% 0.0999% 0.127 linear interpolation
53.7% 0.0999% 0.128 linear interpolation
53.8% 0.0999% 0.129 linear interpolation
53.9% 0.0999% 0.130 linear interpolation
54.0% 0.0999% 0.131 estimate from Buckman et al. (2015) using the NCI method
54.1% 0.0999% 0.132 linear interpolation
54.2% 0.0999% 0.133 linear interpolation
54.3% 0.0999% 0.134 linear interpolation
54.4% 0.0999% 0.136 linear interpolation
54.5% 0.0999% 0.137 linear interpolation
54.6% 0.0999% 0.138 linear interpolation
54.7% 0.0999% 0.139 linear interpolation
54.8% 0.0999% 0.140 linear interpolation
54.9% 0.0999% 0.142 linear interpolation
55.0% 0.0999% 0.143 estimate from Buckman et al. (2015) using the NCI method
55.1% 0.0999% 0.144 linear interpolation
55.2% 0.0999% 0.145 linear interpolation
55.3% 0.0999% 0.147 linear interpolation
55.4% 0.0999% 0.148 linear interpolation
55.5% 0.0999% 0.149 linear interpolation
55.6% 0.0999% 0.151 linear interpolation
55.7% 0.0999% 0.152 linear interpolation
55.8% 0.0999% 0.153 linear interpolation
55.9% 0.0999% 0.155 linear interpolation
56.0% 0.0999% 0.156 estimate from Buckman et al. (2015) using the NCI method
56.1% 0.0999% 0.157 linear interpolation

Page 10 of 18



Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
56.2% 0.0999% 0.159 linear interpolation
56.3% 0.0999% 0.160 linear interpolation
56.4% 0.0999% 0.161 linear interpolation
56.5% 0.0999% 0.163 linear interpolation
56.6% 0.0999% 0.164 linear interpolation
56.7% 0.0999% 0.166 linear interpolation
56.8% 0.0999% 0.167 linear interpolation
56.9% 0.0999% 0.168 linear interpolation
57.0% 0.0999% 0.170 estimate from Buckman et al. (2015) using the NCI method
57.1% 0.0999% 0.171 linear interpolation
57.2% 0.0999% 0.173 linear interpolation
57.3% 0.0999% 0.174 linear interpolation
57.4% 0.0999% 0.176 linear interpolation
57.5% 0.0999% 0.177 linear interpolation
57.6% 0.0999% 0.179 linear interpolation
57.7% 0.0999% 0.180 linear interpolation
57.8% 0.0999% 0.182 linear interpolation
57.9% 0.0999% 0.183 linear interpolation
58.0% 0.0999% 0.185 estimate from Buckman et al. (2015) using the NCI method
58.1% 0.0999% 0.186 linear interpolation
58.2% 0.0999% 0.188 linear interpolation
58.3% 0.0999% 0.190 linear interpolation
58.4% 0.0999% 0.192 linear interpolation
58.5% 0.0999% 0.193 linear interpolation
58.6% 0.0999% 0.195 linear interpolation
58.7% 0.0999% 0.197 linear interpolation
58.8% 0.0999% 0.198 linear interpolation
58.9% 0.0999% 0.200 linear interpolation
59.0% 0.0999% 0.202 estimate from Buckman et al. (2015) using the NCI method
59.1% 0.0999% 0.204 linear interpolation
59.2% 0.0999% 0.205 linear interpolation
59.3% 0.0999% 0.207 linear interpolation
59.4% 0.0999% 0.209 linear interpolation
59.5% 0.0999% 0.211 linear interpolation
59.6% 0.0999% 0.213 linear interpolation
59.7% 0.0999% 0.214 linear interpolation
59.8% 0.0999% 0.216 linear interpolation
59.9% 0.0999% 0.218 linear interpolation
60.0% 0.0999% 0.220 estimate from Buckman et al. (2015) using the NCI method
60.1% 0.0999% 0.222 linear interpolation
60.2% 0.0999% 0.224 linear interpolation
60.3% 0.0999% 0.226 linear interpolation
60.4% 0.0999% 0.228 linear interpolation
60.5% 0.0999% 0.229 linear interpolation
60.6% 0.0999% 0.231 linear interpolation
60.7% 0.0999% 0.233 linear interpolation
60.8% 0.0999% 0.235 linear interpolation
60.9% 0.0999% 0.237 linear interpolation
61.0% 0.0999% 0.239 estimate from Buckman et al. (2015) using the NCI method
61.1% 0.0999% 0.241 linear interpolation
61.2% 0.0999% 0.243 linear interpolation
61.3% 0.0999% 0.246 linear interpolation
61.4% 0.0999% 0.248 linear interpolation
61.5% 0.0999% 0.250 linear interpolation
61.6% 0.0999% 0.252 linear interpolation
61.7% 0.0999% 0.254 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
61.8% 0.0999% 0.256 linear interpolation
61.9% 0.0999% 0.258 linear interpolation
62.0% 0.0999% 0.261 estimate from Buckman et al. (2015) using the NCI method
62.1% 0.0999% 0.263 linear interpolation
62.2% 0.0999% 0.265 linear interpolation
62.3% 0.0999% 0.268 linear interpolation
62.4% 0.0999% 0.270 linear interpolation
62.5% 0.0999% 0.273 linear interpolation
62.6% 0.0999% 0.275 linear interpolation
62.7% 0.0999% 0.277 linear interpolation
62.8% 0.0999% 0.280 linear interpolation
62.9% 0.0999% 0.282 linear interpolation
63.0% 0.0999% 0.285 estimate from Buckman et al. (2015) using the NCI method
63.1% 0.0999% 0.287 linear interpolation
63.2% 0.0999% 0.290 linear interpolation
63.3% 0.0999% 0.292 linear interpolation
63.4% 0.0999% 0.295 linear interpolation
63.5% 0.0999% 0.297 linear interpolation
63.6% 0.0999% 0.300 linear interpolation
63.7% 0.0999% 0.303 linear interpolation
63.8% 0.0999% 0.305 linear interpolation
63.9% 0.0999% 0.308 linear interpolation
64.0% 0.0999% 0.310 estimate from Buckman et al. (2015) using the NCI method
64.1% 0.0999% 0.313 linear interpolation
64.2% 0.0999% 0.316 linear interpolation
64.3% 0.0999% 0.319 linear interpolation
64.4% 0.0999% 0.322 linear interpolation
64.5% 0.0999% 0.325 linear interpolation
64.6% 0.0999% 0.328 linear interpolation
64.7% 0.0999% 0.331 linear interpolation
64.8% 0.0999% 0.333 linear interpolation
64.9% 0.0999% 0.336 linear interpolation
65.0% 0.0999% 0.339 estimate from Buckman et al. (2015) using the NCI method
65.1% 0.0999% 0.342 linear interpolation
65.2% 0.0999% 0.345 linear interpolation
65.3% 0.0999% 0.348 linear interpolation
65.4% 0.0999% 0.352 linear interpolation
65.5% 0.0999% 0.355 linear interpolation
65.6% 0.0999% 0.358 linear interpolation
65.7% 0.0999% 0.361 linear interpolation
65.8% 0.0999% 0.364 linear interpolation
65.9% 0.0999% 0.367 linear interpolation
66.0% 0.0999% 0.370 estimate from Buckman et al. (2015) using the NCI method
66.1% 0.0999% 0.373 linear interpolation
66.2% 0.0999% 0.377 linear interpolation
66.3% 0.0999% 0.380 linear interpolation
66.4% 0.0999% 0.383 linear interpolation
66.5% 0.0999% 0.387 linear interpolation
66.6% 0.0999% 0.390 linear interpolation
66.7% 0.0999% 0.393 linear interpolation
66.8% 0.0999% 0.397 linear interpolation
66.9% 0.0999% 0.400 linear interpolation
67.0% 0.0999% 0.403 estimate from Buckman et al. (2015) using the NCI method
67.1% 0.0999% 0.407 linear interpolation
67.2% 0.0999% 0.411 linear interpolation
67.3% 0.0999% 0.415 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
67.4% 0.0999% 0.419 linear interpolation
67.5% 0.0999% 0.423 linear interpolation
67.6% 0.0999% 0.427 linear interpolation
67.7% 0.0999% 0.430 linear interpolation
67.8% 0.0999% 0.434 linear interpolation
67.9% 0.0999% 0.438 linear interpolation
68.0% 0.0999% 0.442 estimate from Buckman et al. (2015) using the NCI method
68.1% 0.0999% 0.446 linear interpolation
68.2% 0.0999% 0.450 linear interpolation
68.3% 0.0999% 0.454 linear interpolation
68.4% 0.0999% 0.459 linear interpolation
68.5% 0.0999% 0.463 linear interpolation
68.6% 0.0999% 0.467 linear interpolation
68.7% 0.0999% 0.471 linear interpolation
68.8% 0.0999% 0.475 linear interpolation
68.9% 0.0999% 0.479 linear interpolation
69.0% 0.0999% 0.483 estimate from Buckman et al. (2015) using the NCI method
69.1% 0.0999% 0.488 linear interpolation
69.2% 0.0999% 0.493 linear interpolation
69.3% 0.0999% 0.497 linear interpolation
69.4% 0.0999% 0.502 linear interpolation
69.5% 0.0999% 0.506 linear interpolation
69.6% 0.0999% 0.511 linear interpolation
69.7% 0.0999% 0.515 linear interpolation
69.8% 0.0999% 0.520 linear interpolation
69.9% 0.0999% 0.524 linear interpolation
70.0% 0.0999% 0.529 estimate from Buckman et al. (2015) using the NCI method
70.1% 0.0999% 0.534 linear interpolation
70.2% 0.0999% 0.539 linear interpolation
70.3% 0.0999% 0.544 linear interpolation
70.4% 0.0999% 0.549 linear interpolation
70.5% 0.0999% 0.554 linear interpolation
70.6% 0.0999% 0.559 linear interpolation
70.7% 0.0999% 0.564 linear interpolation
70.8% 0.0999% 0.570 linear interpolation
70.9% 0.0999% 0.575 linear interpolation
71.0% 0.0999% 0.580 estimate from Buckman et al. (2015) using the NCI method
71.1% 0.0999% 0.585 linear interpolation
71.2% 0.0999% 0.591 linear interpolation
71.3% 0.0999% 0.596 linear interpolation
71.4% 0.0999% 0.602 linear interpolation
71.5% 0.0999% 0.608 linear interpolation
71.6% 0.0999% 0.613 linear interpolation
71.7% 0.0999% 0.619 linear interpolation
71.8% 0.0999% 0.624 linear interpolation
71.9% 0.0999% 0.630 linear interpolation
72.0% 0.0999% 0.635 estimate from Buckman et al. (2015) using the NCI method
72.1% 0.0999% 0.642 linear interpolation
72.2% 0.0999% 0.648 linear interpolation
72.3% 0.0999% 0.654 linear interpolation
72.4% 0.0999% 0.660 linear interpolation
72.5% 0.0999% 0.667 linear interpolation
72.6% 0.0999% 0.673 linear interpolation
72.7% 0.0999% 0.679 linear interpolation
72.8% 0.0999% 0.685 linear interpolation
72.9% 0.0999% 0.692 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
73.0% 0.0999% 0.698 estimate from Buckman et al. (2015) using the NCI method
73.1% 0.0999% 0.705 linear interpolation
73.2% 0.0999% 0.711 linear interpolation
73.3% 0.0999% 0.718 linear interpolation
73.4% 0.0999% 0.725 linear interpolation
73.5% 0.0999% 0.731 linear interpolation
73.6% 0.0999% 0.738 linear interpolation
73.7% 0.0999% 0.745 linear interpolation
73.8% 0.0999% 0.751 linear interpolation
73.9% 0.0999% 0.758 linear interpolation
74.0% 0.0999% 0.765 estimate from Buckman et al. (2015) using the NCI method
74.1% 0.0999% 0.772 linear interpolation
74.2% 0.0999% 0.780 linear interpolation
74.3% 0.0999% 0.787 linear interpolation
74.4% 0.0999% 0.795 linear interpolation
74.5% 0.0999% 0.802 linear interpolation
74.6% 0.0999% 0.810 linear interpolation
74.7% 0.0999% 0.817 linear interpolation
74.8% 0.0999% 0.825 linear interpolation
74.9% 0.0999% 0.832 linear interpolation
75.0% 0.0999% 0.840 estimate from Buckman et al. (2015) using the NCI method
75.1% 0.0999% 0.848 linear interpolation
75.2% 0.0999% 0.857 linear interpolation
75.3% 0.0999% 0.865 linear interpolation
75.4% 0.0999% 0.873 linear interpolation
75.5% 0.0999% 0.882 linear interpolation
75.6% 0.0999% 0.890 linear interpolation
75.7% 0.0999% 0.898 linear interpolation
75.8% 0.0999% 0.906 linear interpolation
75.9% 0.0999% 0.915 linear interpolation
76.0% 0.0999% 0.923 estimate from Buckman et al. (2015) using the NCI method
76.1% 0.0999% 0.933 linear interpolation
76.2% 0.0999% 0.942 linear interpolation
76.3% 0.0999% 0.952 linear interpolation
76.4% 0.0999% 0.962 linear interpolation
76.5% 0.0999% 0.971 linear interpolation
76.6% 0.0999% 0.981 linear interpolation
76.7% 0.0999% 0.991 linear interpolation
76.8% 0.0999% 1.00 linear interpolation
76.9% 0.0999% 1.01 linear interpolation
77.0% 0.0999% 1.02 estimate from Buckman et al. (2015) using the NCI method
77.1% 0.0999% 1.03 linear interpolation
77.2% 0.0999% 1.04 linear interpolation
77.3% 0.0999% 1.05 linear interpolation
77.4% 0.0999% 1.06 linear interpolation
77.5% 0.0999% 1.07 linear interpolation
77.6% 0.0999% 1.08 linear interpolation
77.7% 0.0999% 1.09 linear interpolation
77.8% 0.0999% 1.10 linear interpolation
77.9% 0.0999% 111 linear interpolation
78.0% 0.0999% 1.12 estimate from Buckman et al. (2015) using the NCI method
78.1% 0.0999% 1.14 linear interpolation
78.2% 0.0999% 1.15 linear interpolation
78.3% 0.0999% 1.16 linear interpolation
78.4% 0.0999% 1.17 linear interpolation
78.5% 0.0999% 1.18 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
78.6% 0.0999% 1.20 linear interpolation
78.7% 0.0999% 1.21 linear interpolation
78.8% 0.0999% 1.22 linear interpolation
78.9% 0.0999% 1.23 linear interpolation
79.0% 0.0999% 1.24 estimate from Buckman et al. (2015) using the NCI method
79.1% 0.0999% 1.26 linear interpolation
79.2% 0.0999% 1.27 linear interpolation
79.3% 0.0999% 1.28 linear interpolation
79.4% 0.0999% 1.30 linear interpolation
79.5% 0.0999% 1.31 linear interpolation
79.6% 0.0999% 1.32 linear interpolation
79.7% 0.0999% 1.34 linear interpolation
79.8% 0.0999% 1.35 linear interpolation
79.9% 0.0999% 1.36 linear interpolation
80.0% 0.0999% 1.38 estimate from Buckman et al. (2015) using the NCI method
80.1% 0.0999% 1.39 linear interpolation
80.2% 0.0999% 1.41 linear interpolation
80.3% 0.0999% 1.42 linear interpolation
80.4% 0.0999% 1.44 linear interpolation
80.5% 0.0999% 1.45 linear interpolation
80.6% 0.0999% 1.47 linear interpolation
80.7% 0.0999% 1.48 linear interpolation
80.8% 0.0999% 1.50 linear interpolation
80.9% 0.0999% 1.51 linear interpolation
81.0% 0.0999% 1.53 estimate from Buckman et al. (2015) using the NCI method
81.1% 0.0999% 1.55 linear interpolation
81.2% 0.0999% 1.57 linear interpolation
81.3% 0.0999% 1.58 linear interpolation
81.4% 0.0999% 1.60 linear interpolation
81.5% 0.0999% 1.62 linear interpolation
81.6% 0.0999% 1.64 linear interpolation
81.7% 0.0999% 1.66 linear interpolation
81.8% 0.0999% 1.67 linear interpolation
81.9% 0.0999% 1.69 linear interpolation
82.0% 0.0999% 1.71 estimate from Buckman et al. (2015) using the NCI method
82.1% 0.0999% 1.73 linear interpolation
82.2% 0.0999% 1.75 linear interpolation
82.3% 0.0999% 1.77 linear interpolation
82.4% 0.0999% 1.79 linear interpolation
82.5% 0.0999% 1.81 linear interpolation
82.6% 0.0999% 1.83 linear interpolation
82.7% 0.0999% 1.85 linear interpolation
82.8% 0.0999% 1.87 linear interpolation
82.9% 0.0999% 1.89 linear interpolation
83.0% 0.0999% 1.91 estimate from Buckman et al. (2015) using the NCI method
83.1% 0.0999% 1.94 linear interpolation
83.2% 0.0999% 1.96 linear interpolation
83.3% 0.0999% 1.98 linear interpolation
83.4% 0.0999% 2.01 linear interpolation
83.5% 0.0999% 2.03 linear interpolation
83.6% 0.0999% 2.05 linear interpolation
83.7% 0.0999% 2.08 linear interpolation
83.8% 0.0999% 2.10 linear interpolation
83.9% 0.0999% 2.12 linear interpolation
84.0% 0.0999% 2.15 estimate from Buckman et al. (2015) using the NCI method
84.1% 0.0999% 2.17 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
84.2% 0.0999% 2.20 linear interpolation
84.3% 0.0999% 2.23 linear interpolation
84.4% 0.0999% 2.26 linear interpolation
84.5% 0.0999% 2.28 linear interpolation
84.6% 0.0999% 2.31 linear interpolation
84.7% 0.0999% 2.34 linear interpolation
84.8% 0.0999% 2.36 linear interpolation
84.9% 0.0999% 2.39 linear interpolation
85.0% 0.0999% 2.42 estimate from Buckman et al. (2015) using the NCI method
85.1% 0.0999% 2.45 linear interpolation
85.2% 0.0999% 2.48 linear interpolation
85.3% 0.0999% 2.51 linear interpolation
85.4% 0.0999% 2.55 linear interpolation
85.5% 0.0999% 2.58 linear interpolation
85.6% 0.0999% 2.61 linear interpolation
85.7% 0.0999% 2.64 linear interpolation
85.8% 0.0999% 2.67 linear interpolation
85.9% 0.0999% 2.70 linear interpolation
86.0% 0.0999% 2.74 estimate from Buckman et al. (2015) using the NCI method
86.1% 0.0999% 2.77 linear interpolation
86.2% 0.0999% 2.81 linear interpolation
86.3% 0.0999% 2.84 linear interpolation
86.4% 0.0999% 2.88 linear interpolation
86.5% 0.0999% 291 linear interpolation
86.6% 0.0999% 2.95 linear interpolation
86.7% 0.0999% 2.98 linear interpolation
86.8% 0.0999% 3.02 linear interpolation
86.9% 0.0999% 3.06 linear interpolation
87.0% 0.0999% 3.09 estimate from Buckman et al. (2015) using the NCI method
87.1% 0.0999% 3.13 linear interpolation
87.2% 0.0999% 3.18 linear interpolation
87.3% 0.0999% 3.22 linear interpolation
87.4% 0.0999% 3.27 linear interpolation
87.5% 0.0999% 3.31 linear interpolation
87.6% 0.0999% 3.35 linear interpolation
87.7% 0.0999% 3.40 linear interpolation
87.8% 0.0999% 3.44 linear interpolation
87.9% 0.0999% 3.48 linear interpolation
88.0% 0.0999% 3.53 estimate from Buckman et al. (2015) using the NCI method
88.1% 0.0999% 3.58 linear interpolation
88.2% 0.0999% 3.63 linear interpolation
88.3% 0.0999% 3.68 linear interpolation
88.4% 0.0999% 3.73 linear interpolation
88.5% 0.0999% 3.78 linear interpolation
88.6% 0.0999% 3.83 linear interpolation
88.7% 0.0999% 3.88 linear interpolation
88.8% 0.0999% 3.93 linear interpolation
88.9% 0.0999% 3.98 linear interpolation
89.0% 0.0999% 4.03 estimate from Buckman et al. (2015) using the NCI method
89.1% 0.0999% 4.10 linear interpolation
89.2% 0.0999% 4.16 linear interpolation
89.3% 0.0999% 4.22 linear interpolation
89.4% 0.0999% 4.28 linear interpolation
89.5% 0.0999% 4.35 linear interpolation
89.6% 0.0999% 4.41 linear interpolation
89.7% 0.0999% 4.47 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
89.8% 0.0999% 4.53 linear interpolation
89.9% 0.0999% 4.60 linear interpolation
90.0% 0.0999% 4.66 estimate from Buckman et al. (2015) using the NCI method
90.1% 0.0999% 4.73 linear interpolation
90.2% 0.0999% 481 linear interpolation
90.3% 0.0999% 4.89 linear interpolation
90.4% 0.0999% 4.96 linear interpolation
90.5% 0.0999% 5.04 linear interpolation
90.6% 0.0999% 5.11 linear interpolation
90.7% 0.0999% 5.19 linear interpolation
90.8% 0.0999% 5.27 linear interpolation
90.9% 0.0999% 5.34 linear interpolation
91.0% 0.0999% 5.42 estimate from Buckman et al. (2015) using the NCI method
91.1% 0.0999% 5.51 linear interpolation
91.2% 0.0999% 5.61 linear interpolation
91.3% 0.0999% 5.70 linear interpolation
91.4% 0.0999% 5.80 linear interpolation
91.5% 0.0999% 5.89 linear interpolation
91.6% 0.0999% 5.98 linear interpolation
91.7% 0.0999% 6.08 linear interpolation
91.8% 0.0999% 6.17 linear interpolation
91.9% 0.0999% 6.27 linear interpolation
92.0% 0.0999% 6.36 estimate from Buckman et al. (2015) using the NCI method
92.1% 0.0999% 6.48 linear interpolation
92.2% 0.0999% 6.60 linear interpolation
92.3% 0.0999% 6.71 linear interpolation
92.4% 0.0999% 6.83 linear interpolation
92.5% 0.0999% 6.94 linear interpolation
92.6% 0.0999% 7.06 linear interpolation
92.7% 0.0999% 7.18 linear interpolation
92.8% 0.0999% 7.29 linear interpolation
92.9% 0.0999% 7.41 linear interpolation
93.0% 0.0999% 7.53 estimate from Buckman et al. (2015) using the NCI method
93.1% 0.0999% 7.69 linear interpolation
93.2% 0.0999% 7.85 linear interpolation
93.3% 0.0999% 8.01 linear interpolation
93.4% 0.0999% 8.17 linear interpolation
93.5% 0.0999% 8.33 linear interpolation
93.6% 0.0999% 8.49 linear interpolation
93.7% 0.0999% 8.65 linear interpolation
93.8% 0.0999% 8.81 linear interpolation
93.9% 0.0999% 8.98 linear interpolation
94.0% 0.0999% 9.14 estimate from Buckman et al. (2015) using the NCI method
94.1% 0.0999% 9.35 linear interpolation
94.2% 0.0999% 9.56 linear interpolation
94.3% 0.0999% 9.77 linear interpolation
94.4% 0.0999% 9.98 linear interpolation
94.5% 0.0999% 10.2 linear interpolation
94.6% 0.0999% 10.4 linear interpolation
94.7% 0.0999% 10.6 linear interpolation
94.8% 0.0999% 10.8 linear interpolation
94.9% 0.0999% 11.0 linear interpolation
95.0% 0.0999% 11.2 estimate from Buckman et al. (2015) using the NCI method
95.1% 0.0999% 115 linear interpolation
95.2% 0.0999% 11.8 linear interpolation
95.3% 0.0999% 121 linear interpolation
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Table Al. IDEQ Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
95.4% 0.0999% 12.4 linear interpolation
95.5% 0.0999% 12.6 linear interpolation
95.6% 0.0999% 12.9 linear interpolation
95.7% 0.0999% 13.2 linear interpolation
95.8% 0.0999% 135 linear interpolation
95.9% 0.0999% 13.8 linear interpolation
96.0% 0.0999% 141 estimate from Buckman et al. (2015) using the NCI method
96.1% 0.0999% 14.5 linear interpolation
96.2% 0.0999% 14.9 linear interpolation
96.3% 0.0999% 15.3 linear interpolation
96.4% 0.0999% 15.7 linear interpolation
96.5% 0.0999% 16.1 linear interpolation
96.6% 0.0999% 16.6 linear interpolation
96.7% 0.0999% 17.0 linear interpolation
96.8% 0.0999% 174 linear interpolation
96.9% 0.0999% 17.8 linear interpolation
97.0% 0.0999% 18.2 estimate from Buckman et al. (2015) using the NCI method
97.1% 0.0999% 18.9 linear interpolation
97.2% 0.0999% 19.6 linear interpolation
97.3% 0.0999% 20.4 linear interpolation
97.4% 0.0999% 21.1 linear interpolation
97.5% 0.0999% 21.8 linear interpolation
97.6% 0.0999% 22.5 linear interpolation
97.7% 0.0999% 23.2 linear interpolation
97.8% 0.0999% 23.9 linear interpolation
97.9% 0.0999% 24.6 linear interpolation
98.0% 0.0999% 25.3 estimate from Buckman et al. (2015) using the NCI method
98.1% 0.0999% 26.9 linear interpolation
98.2% 0.0999% 28.4 linear interpolation
98.3% 0.0999% 29.9 linear interpolation
98.4% 0.0999% 314 linear interpolation
98.5% 0.0999% 32.9 linear interpolation
98.6% 0.0999% 345 linear interpolation
98.7% 0.0999% 36.0 linear interpolation
98.8% 0.0999% 37.5 linear interpolation
98.9% 0.0999% 39.0 linear interpolation
99.0% 0.0999% 40.5 estimate from Buckman et al. (2015) using the NCI method
99.1% 0.0999% 163 linear interpolation
99.2% 0.0999% 285 linear interpolation
99.3% 0.0999% 407 linear interpolation
99.4% 0.0999% 529 linear interpolation
99.5% 0.0999% 651 linear interpolation
99.6% 0.0999% 773 linear interpolation
99.7% 0.0999% 895 linear interpolation
99.8% 0.0999% 1017 linear interpolation
99.9% 0.0999% 1139 linear interpolation
100% 0.0999% 1261 estimate from Buckman et al. (2015) using the NCI method
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis

Mean -- 5.81 arithmetic mean of discrete distribution

0% 0.0999% 0 estimate from Buckman et al. (2015) using the NCI method
0.1% 0.0999% 0.000000020 logarithmic interpolation

0.2% 0.0999% 0.00000004 logarithmic interpolation

0.3% 0.0999% 0.00000008 logarithmic interpolation

0.4% 0.0999% 0.00000015 logarithmic interpolation

0.5% 0.0999% 0.00000030 logarithmic interpolation

0.6% 0.0999% 0.00000060 logarithmic interpolation

0.7% 0.0999% 0.00000119 logarithmic interpolation

0.8% 0.0999% 0.00000235 logarithmic interpolation

0.9% 0.0999% 0.00000464 logarithmic interpolation

1.0% 0.0999% 0.00000918 estimate from Buckman et al. (2015) using the NCI method
1.1% 0.0999% 0.0000106 logarithmic interpolation

1.2% 0.0999% 0.0000122 logarithmic interpolation

1.3% 0.0999% 0.0000140 logarithmic interpolation

1.4% 0.0999% 0.0000161 logarithmic interpolation

1.5% 0.0999% 0.0000186 logarithmic interpolation

1.6% 0.0999% 0.0000214 logarithmic interpolation

1.7% 0.0999% 0.0000247 logarithmic interpolation

1.8% 0.0999% 0.0000284 logarithmic interpolation

1.9% 0.0999% 0.0000327 logarithmic interpolation

2.0% 0.0999% 0.0000377 estimate from Buckman et al. (2015) using the NCI method
2.1% 0.0999% 0.0000405 logarithmic interpolation

2.2% 0.0999% 0.0000436 logarithmic interpolation

2.3% 0.0999% 0.0000469 logarithmic interpolation

2.4% 0.0999% 0.0000504 logarithmic interpolation

2.5% 0.0999% 0.0000542 logarithmic interpolation

2.6% 0.0999% 0.0000583 logarithmic interpolation

2.7% 0.0999% 0.0000627 logarithmic interpolation

2.8% 0.0999% 0.0000675 logarithmic interpolation

2.9% 0.0999% 0.0000726 logarithmic interpolation

3.0% 0.0999% 0.0000780 estimate from Buckman et al. (2015) using the NCI method
3.1% 0.0999% 0.0000822 logarithmic interpolation

3.2% 0.0999% 0.0000866 logarithmic interpolation

3.3% 0.0999% 0.0000913 logarithmic interpolation

3.4% 0.0999% 0.0000961 logarithmic interpolation

3.5% 0.0999% 0.000101 logarithmic interpolation

3.6% 0.0999% 0.000107 logarithmic interpolation

3.7% 0.0999% 0.000112 logarithmic interpolation

3.8% 0.0999% 0.000118 logarithmic interpolation

3.9% 0.0999% 0.000125 logarithmic interpolation

4.0% 0.0999% 0.000131 estimate from Buckman et al. (2015) using the NCI method
4.1% 0.0999% 0.000137 logarithmic interpolation

4.2% 0.0999% 0.000142 logarithmic interpolation

4.3% 0.0999% 0.000148 logarithmic interpolation

4.4% 0.0999% 0.000154 logarithmic interpolation

4.5% 0.0999% 0.000160 logarithmic interpolation

4.6% 0.0999% 0.000167 logarithmic interpolation

4.7% 0.0999% 0.000174 logarithmic interpolation

4.8% 0.0999% 0.000181 logarithmic interpolation

4.9% 0.0999% 0.000188 logarithmic interpolation

5.0% 0.0999% 0.000196 estimate from Buckman et al. (2015) using the NCI method
5.1% 0.0999% 0.000203 logarithmic interpolation

5.2% 0.0999% 0.000210 logarithmic interpolation

5.3% 0.0999% 0.000217 logarithmic interpolation

5.4% 0.0999% 0.000225 logarithmic interpolation

5.5% 0.0999% 0.000233 logarithmic interpolation

5.6% 0.0999% 0.000241 logarithmic interpolation

5.7% 0.0999% 0.000250 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
5.8% 0.0999% 0.000258 logarithmic interpolation
5.9% 0.0999% 0.000268 logarithmic interpolation
6.0% 0.0999% 0.000277 estimate from Buckman et al. (2015) using the NCI method
6.1% 0.0999% 0.000285 logarithmic interpolation
6.2% 0.0999% 0.000294 logarithmic interpolation
6.3% 0.0999% 0.000302 logarithmic interpolation
6.4% 0.0999% 0.000311 logarithmic interpolation
6.5% 0.0999% 0.000321 logarithmic interpolation
6.6% 0.0999% 0.000330 logarithmic interpolation
6.7% 0.0999% 0.000340 logarithmic interpolation
6.8% 0.0999% 0.000350 logarithmic interpolation
6.9% 0.0999% 0.000360 logarithmic interpolation
7.0% 0.0999% 0.000371 estimate from Buckman et al. (2015) using the NCI method
7.1% 0.0999% 0.000381 logarithmic interpolation
7.2% 0.0999% 0.000391 logarithmic interpolation
7.3% 0.0999% 0.000402 logarithmic interpolation
7.4% 0.0999% 0.000413 logarithmic interpolation
7.5% 0.0999% 0.000424 logarithmic interpolation
7.6% 0.0999% 0.000435 logarithmic interpolation
7.7% 0.0999% 0.000447 logarithmic interpolation
7.8% 0.0999% 0.000459 logarithmic interpolation
7.9% 0.0999% 0.000471 logarithmic interpolation
8.0% 0.0999% 0.000484 estimate from Buckman et al. (2015) using the NCI method
8.1% 0.0999% 0.000496 logarithmic interpolation
8.2% 0.0999% 0.000508 logarithmic interpolation
8.3% 0.0999% 0.000521 logarithmic interpolation
8.4% 0.0999% 0.000533 logarithmic interpolation
8.5% 0.0999% 0.000546 logarithmic interpolation
8.6% 0.0999% 0.000560 logarithmic interpolation
8.7% 0.0999% 0.000574 logarithmic interpolation
8.8% 0.0999% 0.000588 logarithmic interpolation
8.9% 0.0999% 0.000602 logarithmic interpolation
9.0% 0.0999% 0.000617 estimate from Buckman et al. (2015) using the NCI method
9.1% 0.0999% 0.000630 logarithmic interpolation
9.2% 0.0999% 0.000644 logarithmic interpolation
9.3% 0.0999% 0.000658 logarithmic interpolation
9.4% 0.0999% 0.000673 logarithmic interpolation
9.5% 0.0999% 0.000687 logarithmic interpolation
9.6% 0.0999% 0.000703 logarithmic interpolation
9.7% 0.0999% 0.000718 logarithmic interpolation
9.8% 0.0999% 0.000734 logarithmic interpolation
9.9% 0.0999% 0.000750 logarithmic interpolation
10.0% 0.0999% 0.000766 estimate from Buckman et al. (2015) using the NCI method
10.1% 0.0999% 0.000783 logarithmic interpolation
10.2% 0.0999% 0.000800 logarithmic interpolation
10.3% 0.0999% 0.000817 logarithmic interpolation
10.4% 0.0999% 0.000835 logarithmic interpolation
10.5% 0.0999% 0.000854 logarithmic interpolation
10.6% 0.0999% 0.000872 logarithmic interpolation
10.7% 0.0999% 0.000891 logarithmic interpolation
10.8% 0.0999% 0.000911 logarithmic interpolation
10.9% 0.0999% 0.000931 logarithmic interpolation
11.0% 0.0999% 0.000951 estimate from Buckman et al. (2015) using the NCI method
11.1% 0.0999% 0.000970 logarithmic interpolation
11.2% 0.0999% 0.000990 logarithmic interpolation
11.3% 0.0999% 0.00101 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
11.4% 0.0999% 0.00103 logarithmic interpolation
11.5% 0.0999% 0.00105 logarithmic interpolation
11.6% 0.0999% 0.00107 logarithmic interpolation
11.7% 0.0999% 0.00109 logarithmic interpolation
11.8% 0.0999% 0.00112 logarithmic interpolation
11.9% 0.0999% 0.00114 logarithmic interpolation
12.0% 0.0999% 0.00116 estimate from Buckman et al. (2015) using the NCI method
12.1% 0.0999% 0.00118 logarithmic interpolation
12.2% 0.0999% 0.00121 logarithmic interpolation
12.3% 0.0999% 0.00123 logarithmic interpolation
12.4% 0.0999% 0.00125 logarithmic interpolation
12.5% 0.0999% 0.00128 logarithmic interpolation
12.6% 0.0999% 0.00130 logarithmic interpolation
12.7% 0.0999% 0.00132 logarithmic interpolation
12.8% 0.0999% 0.00135 logarithmic interpolation
12.9% 0.0999% 0.00137 logarithmic interpolation
13.0% 0.0999% 0.00140 estimate from Buckman et al. (2015) using the NCI method
13.1% 0.0999% 0.00143 logarithmic interpolation
13.2% 0.0999% 0.00145 logarithmic interpolation
13.3% 0.0999% 0.00148 logarithmic interpolation
13.4% 0.0999% 0.00150 logarithmic interpolation
13.5% 0.0999% 0.00153 logarithmic interpolation
13.6% 0.0999% 0.00156 logarithmic interpolation
13.7% 0.0999% 0.00159 logarithmic interpolation
13.8% 0.0999% 0.00162 logarithmic interpolation
13.9% 0.0999% 0.00164 logarithmic interpolation
14.0% 0.0999% 0.00167 estimate from Buckman et al. (2015) using the NCI method
14.1% 0.0999% 0.00170 logarithmic interpolation
14.2% 0.0999% 0.00173 logarithmic interpolation
14.3% 0.0999% 0.00176 logarithmic interpolation
14.4% 0.0999% 0.00179 logarithmic interpolation
14.5% 0.0999% 0.00182 logarithmic interpolation
14.6% 0.0999% 0.00185 logarithmic interpolation
14.7% 0.0999% 0.00189 logarithmic interpolation
14.8% 0.0999% 0.00192 logarithmic interpolation
14.9% 0.0999% 0.00195 logarithmic interpolation
15.0% 0.0999% 0.00199 estimate from Buckman et al. (2015) using the NCI method
15.1% 0.0999% 0.00202 logarithmic interpolation
15.2% 0.0999% 0.00205 logarithmic interpolation
15.3% 0.0999% 0.00209 logarithmic interpolation
15.4% 0.0999% 0.00212 logarithmic interpolation
15.5% 0.0999% 0.00216 logarithmic interpolation
15.6% 0.0999% 0.00219 logarithmic interpolation
15.7% 0.0999% 0.00223 logarithmic interpolation
15.8% 0.0999% 0.00226 logarithmic interpolation
15.9% 0.0999% 0.00230 logarithmic interpolation
16.0% 0.0999% 0.00234 estimate from Buckman et al. (2015) using the NCI method
16.1% 0.0999% 0.00238 logarithmic interpolation
16.2% 0.0999% 0.00241 logarithmic interpolation
16.3% 0.0999% 0.00245 logarithmic interpolation
16.4% 0.0999% 0.00249 logarithmic interpolation
16.5% 0.0999% 0.00253 logarithmic interpolation
16.6% 0.0999% 0.00257 logarithmic interpolation
16.7% 0.0999% 0.00261 logarithmic interpolation
16.8% 0.0999% 0.00265 logarithmic interpolation
16.9% 0.0999% 0.00269 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
17.0% 0.0999% 0.00273 estimate from Buckman et al. (2015) using the NCI method
17.1% 0.0999% 0.00277 logarithmic interpolation
17.2% 0.0999% 0.00282 logarithmic interpolation
17.3% 0.0999% 0.00286 logarithmic interpolation
17.4% 0.0999% 0.00290 logarithmic interpolation
17.5% 0.0999% 0.00294 logarithmic interpolation
17.6% 0.0999% 0.00299 logarithmic interpolation
17.7% 0.0999% 0.00303 logarithmic interpolation
17.8% 0.0999% 0.00308 logarithmic interpolation
17.9% 0.0999% 0.00312 logarithmic interpolation
18.0% 0.0999% 0.00317 estimate from Buckman et al. (2015) using the NCI method
18.1% 0.0999% 0.00321 logarithmic interpolation
18.2% 0.0999% 0.00326 logarithmic interpolation
18.3% 0.0999% 0.00331 logarithmic interpolation
18.4% 0.0999% 0.00335 logarithmic interpolation
18.5% 0.0999% 0.00340 logarithmic interpolation
18.6% 0.0999% 0.00345 logarithmic interpolation
18.7% 0.0999% 0.00350 logarithmic interpolation
18.8% 0.0999% 0.00355 logarithmic interpolation
18.9% 0.0999% 0.00360 logarithmic interpolation
19.0% 0.0999% 0.00366 estimate from Buckman et al. (2015) using the NCI method
19.1% 0.0999% 0.00371 logarithmic interpolation
19.2% 0.0999% 0.00376 logarithmic interpolation
19.3% 0.0999% 0.00381 logarithmic interpolation
19.4% 0.0999% 0.00387 logarithmic interpolation
19.5% 0.0999% 0.00392 logarithmic interpolation
19.6% 0.0999% 0.00398 logarithmic interpolation
19.7% 0.0999% 0.00403 logarithmic interpolation
19.8% 0.0999% 0.00409 logarithmic interpolation
19.9% 0.0999% 0.00415 logarithmic interpolation
20.0% 0.0999% 0.00420 estimate from Buckman et al. (2015) using the NCI method
20.1% 0.0999% 0.00426 logarithmic interpolation
20.2% 0.0999% 0.00432 logarithmic interpolation
20.3% 0.0999% 0.00437 logarithmic interpolation
20.4% 0.0999% 0.00443 logarithmic interpolation
20.5% 0.0999% 0.00449 logarithmic interpolation
20.6% 0.0999% 0.00455 logarithmic interpolation
20.7% 0.0999% 0.00461 logarithmic interpolation
20.8% 0.0999% 0.00468 logarithmic interpolation
20.9% 0.0999% 0.00474 logarithmic interpolation
21.0% 0.0999% 0.00480 estimate from Buckman et al. (2015) using the NCI method
21.1% 0.0999% 0.00486 logarithmic interpolation
21.2% 0.0999% 0.00493 logarithmic interpolation
21.3% 0.0999% 0.00499 logarithmic interpolation
21.4% 0.0999% 0.00505 logarithmic interpolation
21.5% 0.0999% 0.00512 logarithmic interpolation
21.6% 0.0999% 0.00518 logarithmic interpolation
21.7% 0.0999% 0.00525 logarithmic interpolation
21.8% 0.0999% 0.00532 logarithmic interpolation
21.9% 0.0999% 0.00538 logarithmic interpolation
22.0% 0.0999% 0.00545 estimate from Buckman et al. (2015) using the NCI method
22.1% 0.0999% 0.00552 logarithmic interpolation
22.2% 0.0999% 0.00559 logarithmic interpolation
22.3% 0.0999% 0.00566 logarithmic interpolation
22.4% 0.0999% 0.00573 logarithmic interpolation
22.5% 0.0999% 0.00580 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
22.6% 0.0999% 0.00588 logarithmic interpolation
22.7% 0.0999% 0.00595 logarithmic interpolation
22.8% 0.0999% 0.00603 logarithmic interpolation
22.9% 0.0999% 0.00610 logarithmic interpolation
23.0% 0.0999% 0.00618 estimate from Buckman et al. (2015) using the NCI method
23.1% 0.0999% 0.00625 logarithmic interpolation
23.2% 0.0999% 0.00633 logarithmic interpolation
23.3% 0.0999% 0.00641 logarithmic interpolation
23.4% 0.0999% 0.00649 logarithmic interpolation
23.5% 0.0999% 0.00658 logarithmic interpolation
23.6% 0.0999% 0.00666 logarithmic interpolation
23.7% 0.0999% 0.00674 logarithmic interpolation
23.8% 0.0999% 0.00683 logarithmic interpolation
23.9% 0.0999% 0.00691 logarithmic interpolation
24.0% 0.0999% 0.00700 estimate from Buckman et al. (2015) using the NCI method
24.1% 0.0999% 0.00709 logarithmic interpolation
24.2% 0.0999% 0.00717 logarithmic interpolation
24.3% 0.0999% 0.00726 logarithmic interpolation
24.4% 0.0999% 0.00735 logarithmic interpolation
24.5% 0.0999% 0.00744 logarithmic interpolation
24.6% 0.0999% 0.00753 logarithmic interpolation
24.7% 0.0999% 0.00763 logarithmic interpolation
24.8% 0.0999% 0.00772 logarithmic interpolation
24.9% 0.0999% 0.00781 logarithmic interpolation
25.0% 0.0999% 0.00791 estimate from Buckman et al. (2015) using the NCI method
25.1% 0.0999% 0.00800 logarithmic interpolation
25.2% 0.0999% 0.00810 logarithmic interpolation
25.3% 0.0999% 0.00820 logarithmic interpolation
25.4% 0.0999% 0.00830 logarithmic interpolation
25.5% 0.0999% 0.00840 logarithmic interpolation
25.6% 0.0999% 0.00850 logarithmic interpolation
25.7% 0.0999% 0.00860 logarithmic interpolation
25.8% 0.0999% 0.00870 logarithmic interpolation
25.9% 0.0999% 0.00880 logarithmic interpolation
26.0% 0.0999% 0.00891 estimate from Buckman et al. (2015) using the NCI method
26.1% 0.0999% 0.00901 logarithmic interpolation
26.2% 0.0999% 0.00912 logarithmic interpolation
26.3% 0.0999% 0.00922 logarithmic interpolation
26.4% 0.0999% 0.00933 logarithmic interpolation
26.5% 0.0999% 0.00944 logarithmic interpolation
26.6% 0.0999% 0.00955 logarithmic interpolation
26.7% 0.0999% 0.00966 logarithmic interpolation
26.8% 0.0999% 0.00977 logarithmic interpolation
26.9% 0.0999% 0.00989 logarithmic interpolation
27.0% 0.0999% 0.0100 estimate from Buckman et al. (2015) using the NCI method
27.1% 0.0999% 0.0101 logarithmic interpolation
27.2% 0.0999% 0.0102 logarithmic interpolation
27.3% 0.0999% 0.0104 logarithmic interpolation
27.4% 0.0999% 0.0105 logarithmic interpolation
27.5% 0.0999% 0.0106 logarithmic interpolation
27.6% 0.0999% 0.0107 logarithmic interpolation
27.7% 0.0999% 0.0108 logarithmic interpolation
27.8% 0.0999% 0.0110 logarithmic interpolation
27.9% 0.0999% 0.0111 logarithmic interpolation
28.0% 0.0999% 0.0112 estimate from Buckman et al. (2015) using the NCI method
28.1% 0.0999% 0.0114 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
28.2% 0.0999% 0.0115 logarithmic interpolation
28.3% 0.0999% 0.0116 logarithmic interpolation
28.4% 0.0999% 0.0117 logarithmic interpolation
28.5% 0.0999% 0.0119 logarithmic interpolation
28.6% 0.0999% 0.0120 logarithmic interpolation
28.7% 0.0999% 0.0121 logarithmic interpolation
28.8% 0.0999% 0.0123 logarithmic interpolation
28.9% 0.0999% 0.0124 logarithmic interpolation
29.0% 0.0999% 0.0125 estimate from Buckman et al. (2015) using the NCI method
29.1% 0.0999% 0.0127 logarithmic interpolation
29.2% 0.0999% 0.0128 logarithmic interpolation
29.3% 0.0999% 0.0130 logarithmic interpolation
29.4% 0.0999% 0.0131 logarithmic interpolation
29.5% 0.0999% 0.0132 logarithmic interpolation
29.6% 0.0999% 0.0134 logarithmic interpolation
29.7% 0.0999% 0.0135 logarithmic interpolation
29.8% 0.0999% 0.0137 logarithmic interpolation
29.9% 0.0999% 0.0138 logarithmic interpolation
30.0% 0.0999% 0.0140 estimate from Buckman et al. (2015) using the NCI method
30.1% 0.0999% 0.0141 logarithmic interpolation
30.2% 0.0999% 0.0143 logarithmic interpolation
30.3% 0.0999% 0.0145 logarithmic interpolation
30.4% 0.0999% 0.0146 logarithmic interpolation
30.5% 0.0999% 0.0148 logarithmic interpolation
30.6% 0.0999% 0.0149 logarithmic interpolation
30.7% 0.0999% 0.0151 logarithmic interpolation
30.8% 0.0999% 0.0152 logarithmic interpolation
30.9% 0.0999% 0.0154 logarithmic interpolation
31.0% 0.0999% 0.0156 estimate from Buckman et al. (2015) using the NCI method
31.1% 0.0999% 0.0157 logarithmic interpolation
31.2% 0.0999% 0.0159 logarithmic interpolation
31.3% 0.0999% 0.0161 logarithmic interpolation
31.4% 0.0999% 0.0162 logarithmic interpolation
31.5% 0.0999% 0.0164 logarithmic interpolation
31.6% 0.0999% 0.0166 logarithmic interpolation
31.7% 0.0999% 0.0168 logarithmic interpolation
31.8% 0.0999% 0.0169 logarithmic interpolation
31.9% 0.0999% 0.0171 logarithmic interpolation
32.0% 0.0999% 0.0173 estimate from Buckman et al. (2015) using the NCI method
32.1% 0.0999% 0.0175 logarithmic interpolation
32.2% 0.0999% 0.0176 logarithmic interpolation
32.3% 0.0999% 0.0178 logarithmic interpolation
32.4% 0.0999% 0.0180 logarithmic interpolation
32.5% 0.0999% 0.0182 logarithmic interpolation
32.6% 0.0999% 0.0183 logarithmic interpolation
32.7% 0.0999% 0.0185 logarithmic interpolation
32.8% 0.0999% 0.0187 logarithmic interpolation
32.9% 0.0999% 0.0189 logarithmic interpolation
33.0% 0.0999% 0.0191 estimate from Buckman et al. (2015) using the NCI method
33.1% 0.0999% 0.0193 logarithmic interpolation
33.2% 0.0999% 0.0195 logarithmic interpolation
33.3% 0.0999% 0.0197 logarithmic interpolation
33.4% 0.0999% 0.0199 logarithmic interpolation
33.5% 0.0999% 0.0201 logarithmic interpolation
33.6% 0.0999% 0.0203 logarithmic interpolation
33.7% 0.0999% 0.0205 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
33.8% 0.0999% 0.0207 logarithmic interpolation
33.9% 0.0999% 0.0210 logarithmic interpolation
34.0% 0.0999% 0.0212 estimate from Buckman et al. (2015) using the NCI method
34.1% 0.0999% 0.0214 logarithmic interpolation
34.2% 0.0999% 0.0216 logarithmic interpolation
34.3% 0.0999% 0.0218 logarithmic interpolation
34.4% 0.0999% 0.0220 logarithmic interpolation
34.5% 0.0999% 0.0223 logarithmic interpolation
34.6% 0.0999% 0.0225 logarithmic interpolation
34.7% 0.0999% 0.0227 logarithmic interpolation
34.8% 0.0999% 0.0230 logarithmic interpolation
34.9% 0.0999% 0.0232 logarithmic interpolation
35.0% 0.0999% 0.0234 estimate from Buckman et al. (2015) using the NCI method
35.1% 0.0999% 0.0236 logarithmic interpolation
35.2% 0.0999% 0.0239 logarithmic interpolation
35.3% 0.0999% 0.0241 logarithmic interpolation
35.4% 0.0999% 0.0243 logarithmic interpolation
35.5% 0.0999% 0.0246 logarithmic interpolation
35.6% 0.0999% 0.0248 logarithmic interpolation
35.7% 0.0999% 0.0250 logarithmic interpolation
35.8% 0.0999% 0.0253 logarithmic interpolation
35.9% 0.0999% 0.0255 logarithmic interpolation
36.0% 0.0999% 0.0258 estimate from Buckman et al. (2015) using the NCI method
36.1% 0.0999% 0.0260 logarithmic interpolation
36.2% 0.0999% 0.0263 logarithmic interpolation
36.3% 0.0999% 0.0266 logarithmic interpolation
36.4% 0.0999% 0.0268 logarithmic interpolation
36.5% 0.0999% 0.0271 logarithmic interpolation
36.6% 0.0999% 0.0274 logarithmic interpolation
36.7% 0.0999% 0.0276 logarithmic interpolation
36.8% 0.0999% 0.0279 logarithmic interpolation
36.9% 0.0999% 0.0282 logarithmic interpolation
37.0% 0.0999% 0.0285 estimate from Buckman et al. (2015) using the NCI method
37.1% 0.0999% 0.0288 logarithmic interpolation
37.2% 0.0999% 0.0290 logarithmic interpolation
37.3% 0.0999% 0.0293 logarithmic interpolation
37.4% 0.0999% 0.0296 logarithmic interpolation
37.5% 0.0999% 0.0299 logarithmic interpolation
37.6% 0.0999% 0.0302 logarithmic interpolation
37.7% 0.0999% 0.0304 logarithmic interpolation
37.8% 0.0999% 0.0307 logarithmic interpolation
37.9% 0.0999% 0.0310 logarithmic interpolation
38.0% 0.0999% 0.0313 estimate from Buckman et al. (2015) using the NCI method
38.1% 0.0999% 0.0316 logarithmic interpolation
38.2% 0.0999% 0.0319 logarithmic interpolation
38.3% 0.0999% 0.0322 logarithmic interpolation
38.4% 0.0999% 0.0325 logarithmic interpolation
38.5% 0.0999% 0.0329 logarithmic interpolation
38.6% 0.0999% 0.0332 logarithmic interpolation
38.7% 0.0999% 0.0335 logarithmic interpolation
38.8% 0.0999% 0.0338 logarithmic interpolation
38.9% 0.0999% 0.0341 logarithmic interpolation
39.0% 0.0999% 0.0345 estimate from Buckman et al. (2015) using the NCI method
39.1% 0.0999% 0.0348 logarithmic interpolation
39.2% 0.0999% 0.0351 logarithmic interpolation
39.3% 0.0999% 0.0355 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
39.4% 0.0999% 0.0358 logarithmic interpolation
39.5% 0.0999% 0.0361 logarithmic interpolation
39.6% 0.0999% 0.0365 logarithmic interpolation
39.7% 0.0999% 0.0368 logarithmic interpolation
39.8% 0.0999% 0.0372 logarithmic interpolation
39.9% 0.0999% 0.0375 logarithmic interpolation
40.0% 0.0999% 0.0379 estimate from Buckman et al. (2015) using the NCI method
40.1% 0.0999% 0.0382 logarithmic interpolation
40.2% 0.0999% 0.0386 logarithmic interpolation
40.3% 0.0999% 0.0389 logarithmic interpolation
40.4% 0.0999% 0.0393 logarithmic interpolation
40.5% 0.0999% 0.0396 logarithmic interpolation
40.6% 0.0999% 0.0400 logarithmic interpolation
40.7% 0.0999% 0.0404 logarithmic interpolation
40.8% 0.0999% 0.0407 logarithmic interpolation
40.9% 0.0999% 0.0411 logarithmic interpolation
41.0% 0.0999% 0.0415 estimate from Buckman et al. (2015) using the NCI method
41.1% 0.0999% 0.0419 logarithmic interpolation
41.2% 0.0999% 0.0423 logarithmic interpolation
41.3% 0.0999% 0.0427 logarithmic interpolation
41.4% 0.0999% 0.0431 logarithmic interpolation
41.5% 0.0999% 0.0435 logarithmic interpolation
41.6% 0.0999% 0.0439 logarithmic interpolation
41.7% 0.0999% 0.0443 logarithmic interpolation
41.8% 0.0999% 0.0447 logarithmic interpolation
41.9% 0.0999% 0.0451 logarithmic interpolation
42.0% 0.0999% 0.0455 estimate from Buckman et al. (2015) using the NCI method
42.1% 0.0999% 0.0460 logarithmic interpolation
42.2% 0.0999% 0.0464 logarithmic interpolation
42.3% 0.0999% 0.0468 logarithmic interpolation
42.4% 0.0999% 0.0473 logarithmic interpolation
42.5% 0.0999% 0.0477 logarithmic interpolation
42.6% 0.0999% 0.0481 logarithmic interpolation
42.7% 0.0999% 0.0486 logarithmic interpolation
42.8% 0.0999% 0.0490 logarithmic interpolation
42.9% 0.0999% 0.0495 logarithmic interpolation
43.0% 0.0999% 0.0500 estimate from Buckman et al. (2015) using the NCI method
43.1% 0.0999% 0.0504 logarithmic interpolation
43.2% 0.0999% 0.0509 logarithmic interpolation
43.3% 0.0999% 0.0513 logarithmic interpolation
43.4% 0.0999% 0.0518 logarithmic interpolation
43.5% 0.0999% 0.0522 logarithmic interpolation
43.6% 0.0999% 0.0527 logarithmic interpolation
43.7% 0.0999% 0.0532 logarithmic interpolation
43.8% 0.0999% 0.0536 logarithmic interpolation
43.9% 0.0999% 0.0541 logarithmic interpolation
44.0% 0.0999% 0.0546 estimate from Buckman et al. (2015) using the NCI method
44.1% 0.0999% 0.0551 logarithmic interpolation
44.2% 0.0999% 0.0556 logarithmic interpolation
44.3% 0.0999% 0.0561 logarithmic interpolation
44.4% 0.0999% 0.0566 logarithmic interpolation
44.5% 0.0999% 0.0571 logarithmic interpolation
44.6% 0.0999% 0.0576 logarithmic interpolation
44.7% 0.0999% 0.0582 logarithmic interpolation
44.8% 0.0999% 0.0587 logarithmic interpolation
44.9% 0.0999% 0.0592 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
45.0% 0.0999% 0.0597 estimate from Buckman et al. (2015) using the NCI method
45.1% 0.0999% 0.0603 logarithmic interpolation
45.2% 0.0999% 0.0608 logarithmic interpolation
45.3% 0.0999% 0.0614 logarithmic interpolation
45.4% 0.0999% 0.0619 logarithmic interpolation
45.5% 0.0999% 0.0625 logarithmic interpolation
45.6% 0.0999% 0.0630 logarithmic interpolation
45.7% 0.0999% 0.0636 logarithmic interpolation
45.8% 0.0999% 0.0641 logarithmic interpolation
45.9% 0.0999% 0.0647 logarithmic interpolation
46.0% 0.0999% 0.0653 estimate from Buckman et al. (2015) using the NCI method
46.1% 0.0999% 0.0659 logarithmic interpolation
46.2% 0.0999% 0.0665 logarithmic interpolation
46.3% 0.0999% 0.0671 logarithmic interpolation
46.4% 0.0999% 0.0677 logarithmic interpolation
46.5% 0.0999% 0.0683 logarithmic interpolation
46.6% 0.0999% 0.0689 logarithmic interpolation
46.7% 0.0999% 0.0695 logarithmic interpolation
46.8% 0.0999% 0.0701 logarithmic interpolation
46.9% 0.0999% 0.0707 logarithmic interpolation
47.0% 0.0999% 0.0714 estimate from Buckman et al. (2015) using the NCI method
47.1% 0.0999% 0.0720 logarithmic interpolation
47.2% 0.0999% 0.0727 logarithmic interpolation
47.3% 0.0999% 0.0733 logarithmic interpolation
47.4% 0.0999% 0.0740 logarithmic interpolation
47.5% 0.0999% 0.0746 logarithmic interpolation
47.6% 0.0999% 0.0753 logarithmic interpolation
47.7% 0.0999% 0.0760 logarithmic interpolation
47.8% 0.0999% 0.0767 logarithmic interpolation
47.9% 0.0999% 0.0773 logarithmic interpolation
48.0% 0.0999% 0.0780 estimate from Buckman et al. (2015) using the NCI method
48.1% 0.0999% 0.0787 logarithmic interpolation
48.2% 0.0999% 0.0794 logarithmic interpolation
48.3% 0.0999% 0.0801 logarithmic interpolation
48.4% 0.0999% 0.0808 logarithmic interpolation
48.5% 0.0999% 0.0815 logarithmic interpolation
48.6% 0.0999% 0.0823 logarithmic interpolation
48.7% 0.0999% 0.0830 logarithmic interpolation
48.8% 0.0999% 0.0837 logarithmic interpolation
48.9% 0.0999% 0.0845 logarithmic interpolation
49.0% 0.0999% 0.0852 estimate from Buckman et al. (2015) using the NCI method
49.1% 0.0999% 0.0859 logarithmic interpolation
49.2% 0.0999% 0.0867 logarithmic interpolation
49.3% 0.0999% 0.0874 logarithmic interpolation
49.4% 0.0999% 0.0882 logarithmic interpolation
49.5% 0.0999% 0.0889 logarithmic interpolation
49.6% 0.0999% 0.0897 logarithmic interpolation
49.7% 0.0999% 0.0905 logarithmic interpolation
49.8% 0.0999% 0.0913 logarithmic interpolation
49.9% 0.0999% 0.0920 logarithmic interpolation
50.0% 0.0999% 0.0928 estimate from Buckman et al. (2015) using the NCI method
50.1% 0.0999% 0.0937 logarithmic interpolation
50.2% 0.0999% 0.0945 logarithmic interpolation
50.3% 0.0999% 0.0953 logarithmic interpolation
50.4% 0.0999% 0.0962 logarithmic interpolation
50.5% 0.0999% 0.0970 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
50.6% 0.0999% 0.0979 logarithmic interpolation
50.7% 0.0999% 0.0987 logarithmic interpolation
50.8% 0.0999% 0.0996 logarithmic interpolation
50.9% 0.0999% 0.100 logarithmic interpolation
51.0% 0.0999% 0.101 estimate from Buckman et al. (2015) using the NCI method
51.1% 0.0999% 0.102 logarithmic interpolation
51.2% 0.0999% 0.103 logarithmic interpolation
51.3% 0.0999% 0.104 logarithmic interpolation
51.4% 0.0999% 0.105 logarithmic interpolation
51.5% 0.0999% 0.106 logarithmic interpolation
51.6% 0.0999% 0.107 logarithmic interpolation
51.7% 0.0999% 0.108 logarithmic interpolation
51.8% 0.0999% 0.109 logarithmic interpolation
51.9% 0.0999% 0.110 logarithmic interpolation
52.0% 0.0999% 0.111 estimate from Buckman et al. (2015) using the NCI method
52.1% 0.0999% 0.112 logarithmic interpolation
52.2% 0.0999% 0.113 logarithmic interpolation
52.3% 0.0999% 0.114 logarithmic interpolation
52.4% 0.0999% 0.115 logarithmic interpolation
52.5% 0.0999% 0.116 logarithmic interpolation
52.6% 0.0999% 0.117 logarithmic interpolation
52.7% 0.0999% 0.118 logarithmic interpolation
52.8% 0.0999% 0.119 logarithmic interpolation
52.9% 0.0999% 0.120 logarithmic interpolation
53.0% 0.0999% 0.121 estimate from Buckman et al. (2015) using the NCI method
53.1% 0.0999% 0.122 logarithmic interpolation
53.2% 0.0999% 0.123 logarithmic interpolation
53.3% 0.0999% 0.124 logarithmic interpolation
53.4% 0.0999% 0.125 logarithmic interpolation
53.5% 0.0999% 0.126 logarithmic interpolation
53.6% 0.0999% 0.127 logarithmic interpolation
53.7% 0.0999% 0.128 logarithmic interpolation
53.8% 0.0999% 0.129 logarithmic interpolation
53.9% 0.0999% 0.130 logarithmic interpolation
54.0% 0.0999% 0.131 estimate from Buckman et al. (2015) using the NCI method
54.1% 0.0999% 0.132 logarithmic interpolation
54.2% 0.0999% 0.133 logarithmic interpolation
54.3% 0.0999% 0.134 logarithmic interpolation
54.4% 0.0999% 0.136 logarithmic interpolation
54.5% 0.0999% 0.137 logarithmic interpolation
54.6% 0.0999% 0.138 logarithmic interpolation
54.7% 0.0999% 0.139 logarithmic interpolation
54.8% 0.0999% 0.140 logarithmic interpolation
54.9% 0.0999% 0.142 logarithmic interpolation
55.0% 0.0999% 0.143 estimate from Buckman et al. (2015) using the NCI method
55.1% 0.0999% 0.144 logarithmic interpolation
55.2% 0.0999% 0.145 logarithmic interpolation
55.3% 0.0999% 0.147 logarithmic interpolation
55.4% 0.0999% 0.148 logarithmic interpolation
55.5% 0.0999% 0.149 logarithmic interpolation
55.6% 0.0999% 0.151 logarithmic interpolation
55.7% 0.0999% 0.152 logarithmic interpolation
55.8% 0.0999% 0.153 logarithmic interpolation
55.9% 0.0999% 0.155 logarithmic interpolation
56.0% 0.0999% 0.156 estimate from Buckman et al. (2015) using the NCI method
56.1% 0.0999% 0.157 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
56.2% 0.0999% 0.159 logarithmic interpolation
56.3% 0.0999% 0.160 logarithmic interpolation
56.4% 0.0999% 0.161 logarithmic interpolation
56.5% 0.0999% 0.163 logarithmic interpolation
56.6% 0.0999% 0.164 logarithmic interpolation
56.7% 0.0999% 0.165 logarithmic interpolation
56.8% 0.0999% 0.167 logarithmic interpolation
56.9% 0.0999% 0.168 logarithmic interpolation
57.0% 0.0999% 0.170 estimate from Buckman et al. (2015) using the NCI method
57.1% 0.0999% 0.171 logarithmic interpolation
57.2% 0.0999% 0.173 logarithmic interpolation
57.3% 0.0999% 0.174 logarithmic interpolation
57.4% 0.0999% 0.176 logarithmic interpolation
57.5% 0.0999% 0.177 logarithmic interpolation
57.6% 0.0999% 0.179 logarithmic interpolation
57.7% 0.0999% 0.180 logarithmic interpolation
57.8% 0.0999% 0.182 logarithmic interpolation
57.9% 0.0999% 0.183 logarithmic interpolation
58.0% 0.0999% 0.185 estimate from Buckman et al. (2015) using the NCI method
58.1% 0.0999% 0.186 logarithmic interpolation
58.2% 0.0999% 0.188 logarithmic interpolation
58.3% 0.0999% 0.190 logarithmic interpolation
58.4% 0.0999% 0.191 logarithmic interpolation
58.5% 0.0999% 0.193 logarithmic interpolation
58.6% 0.0999% 0.195 logarithmic interpolation
58.7% 0.0999% 0.197 logarithmic interpolation
58.8% 0.0999% 0.198 logarithmic interpolation
58.9% 0.0999% 0.200 logarithmic interpolation
59.0% 0.0999% 0.202 estimate from Buckman et al. (2015) using the NCI method
59.1% 0.0999% 0.204 logarithmic interpolation
59.2% 0.0999% 0.205 logarithmic interpolation
59.3% 0.0999% 0.207 logarithmic interpolation
59.4% 0.0999% 0.209 logarithmic interpolation
59.5% 0.0999% 0.211 logarithmic interpolation
59.6% 0.0999% 0.212 logarithmic interpolation
59.7% 0.0999% 0.214 logarithmic interpolation
59.8% 0.0999% 0.216 logarithmic interpolation
59.9% 0.0999% 0.218 logarithmic interpolation
60.0% 0.0999% 0.220 estimate from Buckman et al. (2015) using the NCI method
60.1% 0.0999% 0.222 logarithmic interpolation
60.2% 0.0999% 0.224 logarithmic interpolation
60.3% 0.0999% 0.225 logarithmic interpolation
60.4% 0.0999% 0.227 logarithmic interpolation
60.5% 0.0999% 0.229 logarithmic interpolation
60.6% 0.0999% 0.231 logarithmic interpolation
60.7% 0.0999% 0.233 logarithmic interpolation
60.8% 0.0999% 0.235 logarithmic interpolation
60.9% 0.0999% 0.237 logarithmic interpolation
61.0% 0.0999% 0.239 estimate from Buckman et al. (2015) using the NCI method
61.1% 0.0999% 0.241 logarithmic interpolation
61.2% 0.0999% 0.243 logarithmic interpolation
61.3% 0.0999% 0.245 logarithmic interpolation
61.4% 0.0999% 0.247 logarithmic interpolation
61.5% 0.0999% 0.250 logarithmic interpolation
61.6% 0.0999% 0.252 logarithmic interpolation
61.7% 0.0999% 0.254 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
61.8% 0.0999% 0.256 logarithmic interpolation
61.9% 0.0999% 0.258 logarithmic interpolation
62.0% 0.0999% 0.261 estimate from Buckman et al. (2015) using the NCI method
62.1% 0.0999% 0.263 logarithmic interpolation
62.2% 0.0999% 0.265 logarithmic interpolation
62.3% 0.0999% 0.268 logarithmic interpolation
62.4% 0.0999% 0.270 logarithmic interpolation
62.5% 0.0999% 0.272 logarithmic interpolation
62.6% 0.0999% 0.275 logarithmic interpolation
62.7% 0.0999% 0.277 logarithmic interpolation
62.8% 0.0999% 0.280 logarithmic interpolation
62.9% 0.0999% 0.282 logarithmic interpolation
63.0% 0.0999% 0.285 estimate from Buckman et al. (2015) using the NCI method
63.1% 0.0999% 0.287 logarithmic interpolation
63.2% 0.0999% 0.290 logarithmic interpolation
63.3% 0.0999% 0.292 logarithmic interpolation
63.4% 0.0999% 0.295 logarithmic interpolation
63.5% 0.0999% 0.297 logarithmic interpolation
63.6% 0.0999% 0.300 logarithmic interpolation
63.7% 0.0999% 0.302 logarithmic interpolation
63.8% 0.0999% 0.305 logarithmic interpolation
63.9% 0.0999% 0.308 logarithmic interpolation
64.0% 0.0999% 0.310 estimate from Buckman et al. (2015) using the NCI method
64.1% 0.0999% 0.313 logarithmic interpolation
64.2% 0.0999% 0.316 logarithmic interpolation
64.3% 0.0999% 0.319 logarithmic interpolation
64.4% 0.0999% 0.322 logarithmic interpolation
64.5% 0.0999% 0.324 logarithmic interpolation
64.6% 0.0999% 0.327 logarithmic interpolation
64.7% 0.0999% 0.330 logarithmic interpolation
64.8% 0.0999% 0.333 logarithmic interpolation
64.9% 0.0999% 0.336 logarithmic interpolation
65.0% 0.0999% 0.339 estimate from Buckman et al. (2015) using the NCI method
65.1% 0.0999% 0.342 logarithmic interpolation
65.2% 0.0999% 0.345 logarithmic interpolation
65.3% 0.0999% 0.348 logarithmic interpolation
65.4% 0.0999% 0.351 logarithmic interpolation
65.5% 0.0999% 0.354 logarithmic interpolation
65.6% 0.0999% 0.357 logarithmic interpolation
65.7% 0.0999% 0.360 logarithmic interpolation
65.8% 0.0999% 0.364 logarithmic interpolation
65.9% 0.0999% 0.367 logarithmic interpolation
66.0% 0.0999% 0.370 estimate from Buckman et al. (2015) using the NCI method
66.1% 0.0999% 0.373 logarithmic interpolation
66.2% 0.0999% 0.376 logarithmic interpolation
66.3% 0.0999% 0.380 logarithmic interpolation
66.4% 0.0999% 0.383 logarithmic interpolation
66.5% 0.0999% 0.386 logarithmic interpolation
66.6% 0.0999% 0.390 logarithmic interpolation
66.7% 0.0999% 0.393 logarithmic interpolation
66.8% 0.0999% 0.396 logarithmic interpolation
66.9% 0.0999% 0.400 logarithmic interpolation
67.0% 0.0999% 0.403 estimate from Buckman et al. (2015) using the NCI method
67.1% 0.0999% 0.407 logarithmic interpolation
67.2% 0.0999% 0.411 logarithmic interpolation
67.3% 0.0999% 0.415 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
67.4% 0.0999% 0.418 logarithmic interpolation
67.5% 0.0999% 0.422 logarithmic interpolation
67.6% 0.0999% 0.426 logarithmic interpolation
67.7% 0.0999% 0.430 logarithmic interpolation
67.8% 0.0999% 0.434 logarithmic interpolation
67.9% 0.0999% 0.438 logarithmic interpolation
68.0% 0.0999% 0.442 estimate from Buckman et al. (2015) using the NCI method
68.1% 0.0999% 0.446 logarithmic interpolation
68.2% 0.0999% 0.450 logarithmic interpolation
68.3% 0.0999% 0.454 logarithmic interpolation
68.4% 0.0999% 0.458 logarithmic interpolation
68.5% 0.0999% 0.462 logarithmic interpolation
68.6% 0.0999% 0.466 logarithmic interpolation
68.7% 0.0999% 0.471 logarithmic interpolation
68.8% 0.0999% 0.475 logarithmic interpolation
68.9% 0.0999% 0.479 logarithmic interpolation
69.0% 0.0999% 0.483 estimate from Buckman et al. (2015) using the NCI method
69.1% 0.0999% 0.488 logarithmic interpolation
69.2% 0.0999% 0.492 logarithmic interpolation
69.3% 0.0999% 0.497 logarithmic interpolation
69.4% 0.0999% 0.501 logarithmic interpolation
69.5% 0.0999% 0.506 logarithmic interpolation
69.6% 0.0999% 0.510 logarithmic interpolation
69.7% 0.0999% 0.515 logarithmic interpolation
69.8% 0.0999% 0.520 logarithmic interpolation
69.9% 0.0999% 0.524 logarithmic interpolation
70.0% 0.0999% 0.529 estimate from Buckman et al. (2015) using the NCI method
70.1% 0.0999% 0.534 logarithmic interpolation
70.2% 0.0999% 0.539 logarithmic interpolation
70.3% 0.0999% 0.544 logarithmic interpolation
70.4% 0.0999% 0.549 logarithmic interpolation
70.5% 0.0999% 0.554 logarithmic interpolation
70.6% 0.0999% 0.559 logarithmic interpolation
70.7% 0.0999% 0.564 logarithmic interpolation
70.8% 0.0999% 0.569 logarithmic interpolation
70.9% 0.0999% 0.574 logarithmic interpolation
71.0% 0.0999% 0.580 estimate from Buckman et al. (2015) using the NCI method
71.1% 0.0999% 0.585 logarithmic interpolation
71.2% 0.0999% 0.590 logarithmic interpolation
71.3% 0.0999% 0.596 logarithmic interpolation
71.4% 0.0999% 0.601 logarithmic interpolation
71.5% 0.0999% 0.607 logarithmic interpolation
71.6% 0.0999% 0.613 logarithmic interpolation
71.7% 0.0999% 0.618 logarithmic interpolation
71.8% 0.0999% 0.624 logarithmic interpolation
71.9% 0.0999% 0.630 logarithmic interpolation
72.0% 0.0999% 0.635 estimate from Buckman et al. (2015) using the NCI method
72.1% 0.0999% 0.641 logarithmic interpolation
72.2% 0.0999% 0.647 logarithmic interpolation
72.3% 0.0999% 0.654 logarithmic interpolation
72.4% 0.0999% 0.660 logarithmic interpolation
72.5% 0.0999% 0.666 logarithmic interpolation
72.6% 0.0999% 0.672 logarithmic interpolation
72.7% 0.0999% 0.678 logarithmic interpolation
72.8% 0.0999% 0.685 logarithmic interpolation
72.9% 0.0999% 0.691 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
73.0% 0.0999% 0.698 estimate from Buckman et al. (2015) using the NCI method
73.1% 0.0999% 0.704 logarithmic interpolation
73.2% 0.0999% 0.711 logarithmic interpolation
73.3% 0.0999% 0.717 logarithmic interpolation
73.4% 0.0999% 0.724 logarithmic interpolation
73.5% 0.0999% 0.730 logarithmic interpolation
73.6% 0.0999% 0.737 logarithmic interpolation
73.7% 0.0999% 0.744 logarithmic interpolation
73.8% 0.0999% 0.751 logarithmic interpolation
73.9% 0.0999% 0.758 logarithmic interpolation
74.0% 0.0999% 0.765 estimate from Buckman et al. (2015) using the NCI method
74.1% 0.0999% 0.772 logarithmic interpolation
74.2% 0.0999% 0.779 logarithmic interpolation
74.3% 0.0999% 0.787 logarithmic interpolation
74.4% 0.0999% 0.794 logarithmic interpolation
74.5% 0.0999% 0.801 logarithmic interpolation
74.6% 0.0999% 0.809 logarithmic interpolation
74.7% 0.0999% 0.817 logarithmic interpolation
74.8% 0.0999% 0.824 logarithmic interpolation
74.9% 0.0999% 0.832 logarithmic interpolation
75.0% 0.0999% 0.840 estimate from Buckman et al. (2015) using the NCI method
75.1% 0.0999% 0.848 logarithmic interpolation
75.2% 0.0999% 0.856 logarithmic interpolation
75.3% 0.0999% 0.864 logarithmic interpolation
75.4% 0.0999% 0.872 logarithmic interpolation
75.5% 0.0999% 0.881 logarithmic interpolation
75.6% 0.0999% 0.889 logarithmic interpolation
75.7% 0.0999% 0.897 logarithmic interpolation
75.8% 0.0999% 0.906 logarithmic interpolation
75.9% 0.0999% 0.914 logarithmic interpolation
76.0% 0.0999% 0.923 estimate from Buckman et al. (2015) using the NCI method
76.1% 0.0999% 0.932 logarithmic interpolation
76.2% 0.0999% 0.942 logarithmic interpolation
76.3% 0.0999% 0.951 logarithmic interpolation
76.4% 0.0999% 0.961 logarithmic interpolation
76.5% 0.0999% 0.970 logarithmic interpolation
76.6% 0.0999% 0.980 logarithmic interpolation
76.7% 0.0999% 0.990 logarithmic interpolation
76.8% 0.0999% 1.00 logarithmic interpolation
76.9% 0.0999% 1.01 logarithmic interpolation
77.0% 0.0999% 1.02 estimate from Buckman et al. (2015) using the NCI method
77.1% 0.0999% 1.03 logarithmic interpolation
77.2% 0.0999% 1.04 logarithmic interpolation
77.3% 0.0999% 1.05 logarithmic interpolation
77.4% 0.0999% 1.06 logarithmic interpolation
77.5% 0.0999% 1.07 logarithmic interpolation
77.6% 0.0999% 1.08 logarithmic interpolation
77.7% 0.0999% 1.09 logarithmic interpolation
77.8% 0.0999% 1.10 logarithmic interpolation
77.9% 0.0999% 111 logarithmic interpolation
78.0% 0.0999% 1.12 estimate from Buckman et al. (2015) using the NCI method
78.1% 0.0999% 1.14 logarithmic interpolation
78.2% 0.0999% 1.15 logarithmic interpolation
78.3% 0.0999% 1.16 logarithmic interpolation
78.4% 0.0999% 1.17 logarithmic interpolation
78.5% 0.0999% 1.18 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
78.6% 0.0999% 1.19 logarithmic interpolation
78.7% 0.0999% 1.21 logarithmic interpolation
78.8% 0.0999% 1.22 logarithmic interpolation
78.9% 0.0999% 1.23 logarithmic interpolation
79.0% 0.0999% 1.24 estimate from Buckman et al. (2015) using the NCI method
79.1% 0.0999% 1.26 logarithmic interpolation
79.2% 0.0999% 1.27 logarithmic interpolation
79.3% 0.0999% 1.28 logarithmic interpolation
79.4% 0.0999% 1.30 logarithmic interpolation
79.5% 0.0999% 1.31 logarithmic interpolation
79.6% 0.0999% 1.32 logarithmic interpolation
79.7% 0.0999% 1.34 logarithmic interpolation
79.8% 0.0999% 1.35 logarithmic interpolation
79.9% 0.0999% 1.36 logarithmic interpolation
80.0% 0.0999% 1.38 estimate from Buckman et al. (2015) using the NCI method
80.1% 0.0999% 1.39 logarithmic interpolation
80.2% 0.0999% 1.41 logarithmic interpolation
80.3% 0.0999% 1.42 logarithmic interpolation
80.4% 0.0999% 1.44 logarithmic interpolation
80.5% 0.0999% 1.45 logarithmic interpolation
80.6% 0.0999% 1.47 logarithmic interpolation
80.7% 0.0999% 1.48 logarithmic interpolation
80.8% 0.0999% 1.50 logarithmic interpolation
80.9% 0.0999% 1.51 logarithmic interpolation
81.0% 0.0999% 1.53 estimate from Buckman et al. (2015) using the NCI method
81.1% 0.0999% 1.55 logarithmic interpolation
81.2% 0.0999% 1.56 logarithmic interpolation
81.3% 0.0999% 1.58 logarithmic interpolation
81.4% 0.0999% 1.60 logarithmic interpolation
81.5% 0.0999% 1.62 logarithmic interpolation
81.6% 0.0999% 1.63 logarithmic interpolation
81.7% 0.0999% 1.65 logarithmic interpolation
81.8% 0.0999% 1.67 logarithmic interpolation
81.9% 0.0999% 1.69 logarithmic interpolation
82.0% 0.0999% 1.71 estimate from Buckman et al. (2015) using the NCI method
82.1% 0.0999% 1.73 logarithmic interpolation
82.2% 0.0999% 1.75 logarithmic interpolation
82.3% 0.0999% 1.77 logarithmic interpolation
82.4% 0.0999% 1.79 logarithmic interpolation
82.5% 0.0999% 1.81 logarithmic interpolation
82.6% 0.0999% 1.83 logarithmic interpolation
82.7% 0.0999% 1.85 logarithmic interpolation
82.8% 0.0999% 1.87 logarithmic interpolation
82.9% 0.0999% 1.89 logarithmic interpolation
83.0% 0.0999% 1.91 estimate from Buckman et al. (2015) using the NCI method
83.1% 0.0999% 1.94 logarithmic interpolation
83.2% 0.0999% 1.96 logarithmic interpolation
83.3% 0.0999% 1.98 logarithmic interpolation
83.4% 0.0999% 2.00 logarithmic interpolation
83.5% 0.0999% 2.03 logarithmic interpolation
83.6% 0.0999% 2.05 logarithmic interpolation
83.7% 0.0999% 2.07 logarithmic interpolation
83.8% 0.0999% 2.10 logarithmic interpolation
83.9% 0.0999% 2.12 logarithmic interpolation
84.0% 0.0999% 2.15 estimate from Buckman et al. (2015) using the NCI method
84.1% 0.0999% 2.17 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
84.2% 0.0999% 2.20 logarithmic interpolation
84.3% 0.0999% 2.22 logarithmic interpolation
84.4% 0.0999% 2.25 logarithmic interpolation
84.5% 0.0999% 2.28 logarithmic interpolation
84.6% 0.0999% 2.31 logarithmic interpolation
84.7% 0.0999% 2.33 logarithmic interpolation
84.8% 0.0999% 2.36 logarithmic interpolation
84.9% 0.0999% 2.39 logarithmic interpolation
85.0% 0.0999% 2.42 estimate from Buckman et al. (2015) using the NCI method
85.1% 0.0999% 2.45 logarithmic interpolation
85.2% 0.0999% 2.48 logarithmic interpolation
85.3% 0.0999% 2.51 logarithmic interpolation
85.4% 0.0999% 2.54 logarithmic interpolation
85.5% 0.0999% 2.57 logarithmic interpolation
85.6% 0.0999% 2.60 logarithmic interpolation
85.7% 0.0999% 2.64 logarithmic interpolation
85.8% 0.0999% 2.67 logarithmic interpolation
85.9% 0.0999% 2.70 logarithmic interpolation
86.0% 0.0999% 2.74 estimate from Buckman et al. (2015) using the NCI method
86.1% 0.0999% 2.77 logarithmic interpolation
86.2% 0.0999% 2.80 logarithmic interpolation
86.3% 0.0999% 2.84 logarithmic interpolation
86.4% 0.0999% 2.87 logarithmic interpolation
86.5% 0.0999% 291 logarithmic interpolation
86.6% 0.0999% 2.94 logarithmic interpolation
86.7% 0.0999% 2.98 logarithmic interpolation
86.8% 0.0999% 3.02 logarithmic interpolation
86.9% 0.0999% 3.05 logarithmic interpolation
87.0% 0.0999% 3.09 estimate from Buckman et al. (2015) using the NCI method
87.1% 0.0999% 3.13 logarithmic interpolation
87.2% 0.0999% 3.17 logarithmic interpolation
87.3% 0.0999% 3.22 logarithmic interpolation
87.4% 0.0999% 3.26 logarithmic interpolation
87.5% 0.0999% 3.30 logarithmic interpolation
87.6% 0.0999% 3.35 logarithmic interpolation
87.7% 0.0999% 3.39 logarithmic interpolation
87.8% 0.0999% 3.44 logarithmic interpolation
87.9% 0.0999% 3.48 logarithmic interpolation
88.0% 0.0999% 3.53 estimate from Buckman et al. (2015) using the NCI method
88.1% 0.0999% 3.58 logarithmic interpolation
88.2% 0.0999% 3.62 logarithmic interpolation
88.3% 0.0999% 3.67 logarithmic interpolation
88.4% 0.0999% 3.72 logarithmic interpolation
88.5% 0.0999% 3.77 logarithmic interpolation
88.6% 0.0999% 3.82 logarithmic interpolation
88.7% 0.0999% 3.88 logarithmic interpolation
88.8% 0.0999% 3.93 logarithmic interpolation
88.9% 0.0999% 3.98 logarithmic interpolation
89.0% 0.0999% 4.03 estimate from Buckman et al. (2015) using the NCI method
89.1% 0.0999% 4.09 logarithmic interpolation
89.2% 0.0999% 4.15 logarithmic interpolation
89.3% 0.0999% 4.21 logarithmic interpolation
89.4% 0.0999% 4.27 logarithmic interpolation
89.5% 0.0999% 4.33 logarithmic interpolation
89.6% 0.0999% 4.40 logarithmic interpolation
89.7% 0.0999% 4.46 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
89.8% 0.0999% 453 logarithmic interpolation
89.9% 0.0999% 4.59 logarithmic interpolation
90.0% 0.0999% 4.66 estimate from Buckman et al. (2015) using the NCI method
90.1% 0.0999% 4.73 logarithmic interpolation
90.2% 0.0999% 4.80 logarithmic interpolation
90.3% 0.0999% 4.87 logarithmic interpolation
90.4% 0.0999% 4.95 logarithmic interpolation
90.5% 0.0999% 5.02 logarithmic interpolation
90.6% 0.0999% 5.10 logarithmic interpolation
90.7% 0.0999% 5.18 logarithmic interpolation
90.8% 0.0999% 5.26 logarithmic interpolation
90.9% 0.0999% 5.34 logarithmic interpolation
91.0% 0.0999% 5.42 estimate from Buckman et al. (2015) using the NCI method
91.1% 0.0999% 5.51 logarithmic interpolation
91.2% 0.0999% 5.59 logarithmic interpolation
91.3% 0.0999% 5.69 logarithmic interpolation
91.4% 0.0999% 5.78 logarithmic interpolation
91.5% 0.0999% 5.87 logarithmic interpolation
91.6% 0.0999% 5.97 logarithmic interpolation
91.7% 0.0999% 6.06 logarithmic interpolation
91.8% 0.0999% 6.16 logarithmic interpolation
91.9% 0.0999% 6.26 logarithmic interpolation
92.0% 0.0999% 6.36 estimate from Buckman et al. (2015) using the NCI method
92.1% 0.0999% 6.47 logarithmic interpolation
92.2% 0.0999% 6.58 logarithmic interpolation
92.3% 0.0999% 6.69 logarithmic interpolation
92.4% 0.0999% 6.80 logarithmic interpolation
92.5% 0.0999% 6.92 logarithmic interpolation
92.6% 0.0999% 7.04 logarithmic interpolation
92.7% 0.0999% 7.16 logarithmic interpolation
92.8% 0.0999% 7.28 logarithmic interpolation
92.9% 0.0999% 7.40 logarithmic interpolation
93.0% 0.0999% 7.53 estimate from Buckman et al. (2015) using the NCI method
93.1% 0.0999% 7.67 logarithmic interpolation
93.2% 0.0999% 7.82 logarithmic interpolation
93.3% 0.0999% 7.98 logarithmic interpolation
93.4% 0.0999% 8.13 logarithmic interpolation
93.5% 0.0999% 8.29 logarithmic interpolation
93.6% 0.0999% 8.45 logarithmic interpolation
93.7% 0.0999% 8.62 logarithmic interpolation
93.8% 0.0999% 8.79 logarithmic interpolation
93.9% 0.0999% 8.96 logarithmic interpolation
94.0% 0.0999% 9.14 estimate from Buckman et al. (2015) using the NCI method
94.1% 0.0999% 9.33 logarithmic interpolation
94.2% 0.0999% 9.52 logarithmic interpolation
94.3% 0.0999% 9.72 logarithmic interpolation
94.4% 0.0999% 9.93 logarithmic interpolation
94.5% 0.0999% 10.1 logarithmic interpolation
94.6% 0.0999% 10.3 logarithmic interpolation
94.7% 0.0999% 10.6 logarithmic interpolation
94.8% 0.0999% 10.8 logarithmic interpolation
94.9% 0.0999% 11.0 logarithmic interpolation
95.0% 0.0999% 11.2 estimate from Buckman et al. (2015) using the NCI method
95.1% 0.0999% 115 logarithmic interpolation
95.2% 0.0999% 11.8 logarithmic interpolation
95.3% 0.0999% 12.0 logarithmic interpolation
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Table A2. Alternate Interpolated Idaho Fish Consumption Distribution for the General Population

Percentile Discrete Probability FCR (g/day) Basis
95.4% 0.0999% 12.3 logarithmic interpolation
95.5% 0.0999% 12.6 logarithmic interpolation
95.6% 0.0999% 12.9 logarithmic interpolation
95.7% 0.0999% 131 logarithmic interpolation
95.8% 0.0999% 134 logarithmic interpolation
95.9% 0.0999% 13.7 logarithmic interpolation
96.0% 0.0999% 141 estimate from Buckman et al. (2015) using the NCI method
96.1% 0.0999% 14.4 logarithmic interpolation
96.2% 0.0999% 14.8 logarithmic interpolation
96.3% 0.0999% 15.2 logarithmic interpolation
96.4% 0.0999% 15.6 logarithmic interpolation
96.5% 0.0999% 16.0 logarithmic interpolation
96.6% 0.0999% 16.4 logarithmic interpolation
96.7% 0.0999% 16.9 logarithmic interpolation
96.8% 0.0999% 17.3 logarithmic interpolation
96.9% 0.0999% 17.8 logarithmic interpolation
97.0% 0.0999% 18.2 estimate from Buckman et al. (2015) using the NCI method
97.1% 0.0999% 18.8 logarithmic interpolation
97.2% 0.0999% 195 logarithmic interpolation
97.3% 0.0999% 20.1 logarithmic interpolation
97.4% 0.0999% 20.8 logarithmic interpolation
97.5% 0.0999% 215 logarithmic interpolation
97.6% 0.0999% 22.2 logarithmic interpolation
97.7% 0.0999% 23.0 logarithmic interpolation
97.8% 0.0999% 23.7 logarithmic interpolation
97.9% 0.0999% 24.5 logarithmic interpolation
98.0% 0.0999% 25.3 estimate from Buckman et al. (2015) using the NCI method
98.1% 0.0999% 26.6 logarithmic interpolation
98.2% 0.0999% 27.8 logarithmic interpolation
98.3% 0.0999% 29.2 logarithmic interpolation
98.4% 0.0999% 30.6 logarithmic interpolation
98.5% 0.0999% 32.0 logarithmic interpolation
98.6% 0.0999% 33.6 logarithmic interpolation
98.7% 0.0999% 35.2 logarithmic interpolation
98.8% 0.0999% 36.9 logarithmic interpolation
98.9% 0.0999% 38.7 logarithmic interpolation
99.0% 0.0999% 40.5 estimate from Buckman et al. (2015) using the NCI method
99.1% 0.0999% 57 logarithmic interpolation
99.2% 0.0999% 81 logarithmic interpolation
99.3% 0.0999% 114 logarithmic interpolation
99.4% 0.0999% 160 logarithmic interpolation
99.5% 0.0999% 226 logarithmic interpolation
99.6% 0.0999% 319 logarithmic interpolation
99.7% 0.0999% 450 logarithmic interpolation
99.8% 0.0999% 634 logarithmic interpolation
99.9% 0.0999% 895 logarithmic interpolation
100% 0.0999% 1261 estimate from Buckman et al. (2015) using the NCI method
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
Mean - 19.2 arithmetic mean of discrete distribution
0% 0.0999% 0.992 set equal to the 5th percentile value
0.1% 0.0999% 0.992 linear interpolation
0.2% 0.0999% 0.992 linear interpolation
0.3% 0.0999% 0.992 linear interpolation
0.4% 0.0999% 0.992 linear interpolation
0.5% 0.0999% 0.992 linear interpolation
0.6% 0.0999% 0.992 linear interpolation
0.7% 0.0999% 0.992 linear interpolation
0.8% 0.0999% 0.992 linear interpolation
0.9% 0.0999% 0.992 linear interpolation
1.0% 0.0999% 0.992 linear interpolation
1.1% 0.0999% 0.992 linear interpolation
1.2% 0.0999% 0.992 linear interpolation
1.3% 0.0999% 0.992 linear interpolation
1.4% 0.0999% 0.992 linear interpolation
1.5% 0.0999% 0.992 linear interpolation
1.6% 0.0999% 0.992 linear interpolation
1.7% 0.0999% 0.992 linear interpolation
1.8% 0.0999% 0.992 linear interpolation
1.9% 0.0999% 0.992 linear interpolation
2.0% 0.0999% 0.992 linear interpolation
2.1% 0.0999% 0.992 linear interpolation
2.2% 0.0999% 0.992 linear interpolation
2.3% 0.0999% 0.992 linear interpolation
2.4% 0.0999% 0.992 linear interpolation
2.5% 0.0999% 0.992 linear interpolation
2.6% 0.0999% 0.992 linear interpolation
2.7% 0.0999% 0.992 linear interpolation
2.8% 0.0999% 0.992 linear interpolation
2.9% 0.0999% 0.992 linear interpolation
3.0% 0.0999% 0.992 linear interpolation
3.1% 0.0999% 0.992 linear interpolation
3.2% 0.0999% 0.992 linear interpolation
3.3% 0.0999% 0.992 linear interpolation
3.4% 0.0999% 0.992 linear interpolation
3.5% 0.0999% 0.992 linear interpolation
3.6% 0.0999% 0.992 linear interpolation
3.7% 0.0999% 0.992 linear interpolation
3.8% 0.0999% 0.992 linear interpolation
3.9% 0.0999% 0.992 linear interpolation
4.0% 0.0999% 0.992 linear interpolation
4.1% 0.0999% 0.992 linear interpolation
4.2% 0.0999% 0.992 linear interpolation
4.3% 0.0999% 0.992 linear interpolation
4.4% 0.0999% 0.992 linear interpolation
4.5% 0.0999% 0.992 linear interpolation
4.6% 0.0999% 0.992 linear interpolation
4.7% 0.0999% 0.992 linear interpolation
4.8% 0.0999% 0.992 linear interpolation
4.9% 0.0999% 0.992 linear interpolation
estimate from Ridolfi and Pacific Market Research (2015) using

5.0% 0.0999% 0.992 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species

5.1% 0.0999% 1.01 linear interpolation

5.2% 0.0999% 1.02 linear interpolation

5.3% 0.0999% 1.03 linear interpolation

5.4% 0.0999% 1.04 linear interpolation

5.5% 0.0999% 1.06 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
5.6% 0.0999% 1.07 linear interpolation
5.7% 0.0999% 1.08 linear interpolation
5.8% 0.0999% 1.10 linear interpolation
5.9% 0.0999% 1.11 linear interpolation
6.0% 0.0999% 1.12 linear interpolation
6.1% 0.0999% 1.14 linear interpolation
6.2% 0.0999% 1.15 linear interpolation
6.3% 0.0999% 1.16 linear interpolation
6.4% 0.0999% 1.18 linear interpolation
6.5% 0.0999% 1.19 linear interpolation
6.6% 0.0999% 1.20 linear interpolation
6.7% 0.0999% 1.21 linear interpolation
6.8% 0.0999% 1.23 linear interpolation
6.9% 0.0999% 1.24 linear interpolation
7.0% 0.0999% 1.25 linear interpolation
7.1% 0.0999% 1.27 linear interpolation
7.2% 0.0999% 1.28 linear interpolation
7.3% 0.0999% 1.29 linear interpolation
7.4% 0.0999% 1.31 linear interpolation
7.5% 0.0999% 1.32 linear interpolation
7.6% 0.0999% 1.33 linear interpolation
7.7% 0.0999% 1.35 linear interpolation
7.8% 0.0999% 1.36 linear interpolation
7.9% 0.0999% 1.37 linear interpolation
8.0% 0.0999% 1.38 linear interpolation
8.1% 0.0999% 1.40 linear interpolation
8.2% 0.0999% 1.41 linear interpolation
8.3% 0.0999% 1.42 linear interpolation
8.4% 0.0999% 1.44 linear interpolation
8.5% 0.0999% 1.45 linear interpolation
8.6% 0.0999% 1.46 linear interpolation
8.7% 0.0999% 1.48 linear interpolation
8.8% 0.0999% 1.49 linear interpolation
8.9% 0.0999% 1.50 linear interpolation
9.0% 0.0999% 1.51 linear interpolation
9.1% 0.0999% 1.53 linear interpolation
9.2% 0.0999% 1.54 linear interpolation
9.3% 0.0999% 1.55 linear interpolation
9.4% 0.0999% 1.57 linear interpolation
9.5% 0.0999% 1.58 linear interpolation
9.6% 0.0999% 1.59 linear interpolation
9.7% 0.0999% 1.61 linear interpolation
9.8% 0.0999% 1.62 linear interpolation
9.9% 0.0999% 1.63 linear interpolation
estimate from Ridolfi and Pacific Market Research (2015) using

10.0% 0.0999% 1.65 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species

10.1% 0.0999% 1.66 linear interpolation

10.2% 0.0999% 1.67 linear interpolation

10.3% 0.0999% 1.68 linear interpolation

10.4% 0.0999% 1.70 linear interpolation

10.5% 0.0999% 1.71 linear interpolation

10.6% 0.0999% 1.72 linear interpolation

10.7% 0.0999% 1.73 linear interpolation

10.8% 0.0999% 1.75 linear interpolation

10.9% 0.0999% 1.76 linear interpolation

11.0% 0.0999% 1.77 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
11.1% 0.0999% 1.78 linear interpolation
11.2% 0.0999% 1.80 linear interpolation
11.3% 0.0999% 1.81 linear interpolation
11.4% 0.0999% 1.82 linear interpolation
11.5% 0.0999% 1.83 linear interpolation
11.6% 0.0999% 1.85 linear interpolation
11.7% 0.0999% 1.86 linear interpolation
11.8% 0.0999% 1.87 linear interpolation
11.9% 0.0999% 1.88 linear interpolation
12.0% 0.0999% 1.90 linear interpolation
12.1% 0.0999% 1.91 linear interpolation
12.2% 0.0999% 1.92 linear interpolation
12.3% 0.0999% 1.94 linear interpolation
12.4% 0.0999% 1.95 linear interpolation
12.5% 0.0999% 1.96 linear interpolation
12.6% 0.0999% 1.97 linear interpolation
12.7% 0.0999% 1.99 linear interpolation
12.8% 0.0999% 2.00 linear interpolation
12.9% 0.0999% 2.01 linear interpolation
13.0% 0.0999% 2.02 linear interpolation
13.1% 0.0999% 2.04 linear interpolation
13.2% 0.0999% 2.05 linear interpolation
13.3% 0.0999% 2.06 linear interpolation
13.4% 0.0999% 2.07 linear interpolation
13.5% 0.0999% 2.09 linear interpolation
13.6% 0.0999% 2.10 linear interpolation
13.7% 0.0999% 211 linear interpolation
13.8% 0.0999% 2.12 linear interpolation
13.9% 0.0999% 2.14 linear interpolation
14.0% 0.0999% 2.15 linear interpolation
14.1% 0.0999% 2.16 linear interpolation
14.2% 0.0999% 2.17 linear interpolation
14.3% 0.0999% 2.19 linear interpolation
14.4% 0.0999% 2.20 linear interpolation
14.5% 0.0999% 221 linear interpolation
14.6% 0.0999% 2.22 linear interpolation
14.7% 0.0999% 2.24 linear interpolation
14.8% 0.0999% 2.25 linear interpolation
14.9% 0.0999% 2.26 linear interpolation
estimate from Ridolfi and Pacific Market Research (2015) using

15.0% 0.0999% 2.27 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species

15.1% 0.0999% 2.29 linear interpolation

15.2% 0.0999% 2.30 linear interpolation

15.3% 0.0999% 2.32 linear interpolation

15.4% 0.0999% 2.33 linear interpolation

15.5% 0.0999% 2.34 linear interpolation

15.6% 0.0999% 2.36 linear interpolation

15.7% 0.0999% 2.37 linear interpolation

15.8% 0.0999% 2.38 linear interpolation

15.9% 0.0999% 2.40 linear interpolation

16.0% 0.0999% 2.41 linear interpolation

16.1% 0.0999% 2.42 linear interpolation

16.2% 0.0999% 2.44 linear interpolation

16.3% 0.0999% 2.45 linear interpolation

16.4% 0.0999% 2.46 linear interpolation

16.5% 0.0999% 2.48 linear interpolation

Page 3 of 19



Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
16.6% 0.0999% 2.49 linear interpolation
16.7% 0.0999% 251 linear interpolation
16.8% 0.0999% 2.52 linear interpolation
16.9% 0.0999% 2.53 linear interpolation
17.0% 0.0999% 2.55 linear interpolation
17.1% 0.0999% 2.56 linear interpolation
17.2% 0.0999% 2.57 linear interpolation
17.3% 0.0999% 2.59 linear interpolation
17.4% 0.0999% 2.60 linear interpolation
17.5% 0.0999% 2.61 linear interpolation
17.6% 0.0999% 2.63 linear interpolation
17.7% 0.0999% 2.64 linear interpolation
17.8% 0.0999% 2.65 linear interpolation
17.9% 0.0999% 2.67 linear interpolation
18.0% 0.0999% 2.68 linear interpolation
18.1% 0.0999% 2.69 linear interpolation
18.2% 0.0999% 271 linear interpolation
18.3% 0.0999% 2.72 linear interpolation
18.4% 0.0999% 2.74 linear interpolation
18.5% 0.0999% 2.75 linear interpolation
18.6% 0.0999% 2.76 linear interpolation
18.7% 0.0999% 2.78 linear interpolation
18.8% 0.0999% 2.79 linear interpolation
18.9% 0.0999% 2.80 linear interpolation
19.0% 0.0999% 2.82 linear interpolation
19.1% 0.0999% 2.83 linear interpolation
19.2% 0.0999% 2.84 linear interpolation
19.3% 0.0999% 2.86 linear interpolation
19.4% 0.0999% 2.87 linear interpolation
19.5% 0.0999% 2.88 linear interpolation
19.6% 0.0999% 2.90 linear interpolation
19.7% 0.0999% 291 linear interpolation
19.8% 0.0999% 2.93 linear interpolation
19.9% 0.0999% 2.94 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
20.0% 0.0999% 2.95 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
20.1% 0.0999% 2.97 linear interpolation
20.2% 0.0999% 2.98 linear interpolation
20.3% 0.0999% 2.99 linear interpolation
20.4% 0.0999% 3.01 linear interpolation
20.5% 0.0999% 3.02 linear interpolation
20.6% 0.0999% 3.04 linear interpolation
20.7% 0.0999% 3.05 linear interpolation
20.8% 0.0999% 3.06 linear interpolation
20.9% 0.0999% 3.08 linear interpolation
21.0% 0.0999% 3.09 linear interpolation
21.1% 0.0999% 3.11 linear interpolation
21.2% 0.0999% 3.12 linear interpolation
21.3% 0.0999% 3.13 linear interpolation
21.4% 0.0999% 3.15 linear interpolation
21.5% 0.0999% 3.16 linear interpolation
21.6% 0.0999% 3.18 linear interpolation
21.7% 0.0999% 3.19 linear interpolation
21.8% 0.0999% 3.21 linear interpolation
21.9% 0.0999% 3.22 linear interpolation
22.0% 0.0999% 3.23 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
22.1% 0.0999% 3.25 linear interpolation
22.2% 0.0999% 3.26 linear interpolation
22.3% 0.0999% 3.28 linear interpolation
22.4% 0.0999% 3.29 linear interpolation
22.5% 0.0999% 3.30 linear interpolation
22.6% 0.0999% 3.32 linear interpolation
22.7% 0.0999% 3.33 linear interpolation
22.8% 0.0999% 3.35 linear interpolation
22.9% 0.0999% 3.36 linear interpolation
23.0% 0.0999% 3.37 linear interpolation
23.1% 0.0999% 3.39 linear interpolation
23.2% 0.0999% 3.40 linear interpolation
23.3% 0.0999% 3.42 linear interpolation
23.4% 0.0999% 3.43 linear interpolation
23.5% 0.0999% 3.44 linear interpolation
23.6% 0.0999% 3.46 linear interpolation
23.7% 0.0999% 3.47 linear interpolation
23.8% 0.0999% 3.49 linear interpolation
23.9% 0.0999% 3.50 linear interpolation
24.0% 0.0999% 3.51 linear interpolation
24.1% 0.0999% 3.53 linear interpolation
24.2% 0.0999% 3.54 linear interpolation
24.3% 0.0999% 3.56 linear interpolation
24.4% 0.0999% 3.57 linear interpolation
24.5% 0.0999% 3.58 linear interpolation
24.6% 0.0999% 3.60 linear interpolation
24.7% 0.0999% 3.61 linear interpolation
24.8% 0.0999% 3.63 linear interpolation
24.9% 0.0999% 3.64 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
25.0% 0.0999% 3.65 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
25.1% 0.0999% 3.67 linear interpolation
25.2% 0.0999% 3.69 linear interpolation
25.3% 0.0999% 3.70 linear interpolation
25.4% 0.0999% 3.72 linear interpolation
25.5% 0.0999% 3.73 linear interpolation
25.6% 0.0999% 3.75 linear interpolation
25.7% 0.0999% 3.76 linear interpolation
25.8% 0.0999% 3.78 linear interpolation
25.9% 0.0999% 3.79 linear interpolation
26.0% 0.0999% 3.81 linear interpolation
26.1% 0.0999% 3.82 linear interpolation
26.2% 0.0999% 3.84 linear interpolation
26.3% 0.0999% 3.86 linear interpolation
26.4% 0.0999% 3.87 linear interpolation
26.5% 0.0999% 3.89 linear interpolation
26.6% 0.0999% 3.90 linear interpolation
26.7% 0.0999% 3.92 linear interpolation
26.8% 0.0999% 3.93 linear interpolation
26.9% 0.0999% 3.95 linear interpolation
27.0% 0.0999% 3.96 linear interpolation
27.1% 0.0999% 3.98 linear interpolation
27.2% 0.0999% 3.99 linear interpolation
27.3% 0.0999% 4.01 linear interpolation
27.4% 0.0999% 4.03 linear interpolation
27.5% 0.0999% 4.04 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
27.6% 0.0999% 4.06 linear interpolation
27.7% 0.0999% 4.07 linear interpolation
27.8% 0.0999% 4.09 linear interpolation
27.9% 0.0999% 4.10 linear interpolation
28.0% 0.0999% 4.12 linear interpolation
28.1% 0.0999% 4.13 linear interpolation
28.2% 0.0999% 4.15 linear interpolation
28.3% 0.0999% 4.17 linear interpolation
28.4% 0.0999% 4.18 linear interpolation
28.5% 0.0999% 4.20 linear interpolation
28.6% 0.0999% 4.21 linear interpolation
28.7% 0.0999% 4.23 linear interpolation
28.8% 0.0999% 4.24 linear interpolation
28.9% 0.0999% 4.26 linear interpolation
29.0% 0.0999% 4.27 linear interpolation
29.1% 0.0999% 4.29 linear interpolation
29.2% 0.0999% 4.30 linear interpolation
29.3% 0.0999% 4.32 linear interpolation
29.4% 0.0999% 4.34 linear interpolation
29.5% 0.0999% 4.35 linear interpolation
29.6% 0.0999% 4.37 linear interpolation
29.7% 0.0999% 4.38 linear interpolation
29.8% 0.0999% 4.40 linear interpolation
29.9% 0.0999% 441 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
30.0% 0.0999% 4.43 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
30.1% 0.0999% 4.45 linear interpolation
30.2% 0.0999% 4.46 linear interpolation
30.3% 0.0999% 4.48 linear interpolation
30.4% 0.0999% 4.50 linear interpolation
30.5% 0.0999% 4.52 linear interpolation
30.6% 0.0999% 4.53 linear interpolation
30.7% 0.0999% 4.55 linear interpolation
30.8% 0.0999% 4.57 linear interpolation
30.9% 0.0999% 4.59 linear interpolation
31.0% 0.0999% 4.60 linear interpolation
31.1% 0.0999% 4.62 linear interpolation
31.2% 0.0999% 4.64 linear interpolation
31.3% 0.0999% 4.66 linear interpolation
31.4% 0.0999% 4.67 linear interpolation
31.5% 0.0999% 4.69 linear interpolation
31.6% 0.0999% 4.71 linear interpolation
31.7% 0.0999% 4.72 linear interpolation
31.8% 0.0999% 4.74 linear interpolation
31.9% 0.0999% 4.76 linear interpolation
32.0% 0.0999% 4.78 linear interpolation
32.1% 0.0999% 4.79 linear interpolation
32.2% 0.0999% 4.81 linear interpolation
32.3% 0.0999% 4.83 linear interpolation
32.4% 0.0999% 4.85 linear interpolation
32.5% 0.0999% 4.86 linear interpolation
32.6% 0.0999% 4.88 linear interpolation
32.7% 0.0999% 4.90 linear interpolation
32.8% 0.0999% 4.92 linear interpolation
32.9% 0.0999% 4.93 linear interpolation
33.0% 0.0999% 4.95 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
33.1% 0.0999% 4.97 linear interpolation
33.2% 0.0999% 4.99 linear interpolation
33.3% 0.0999% 5.00 linear interpolation
33.4% 0.0999% 5.02 linear interpolation
33.5% 0.0999% 5.04 linear interpolation
33.6% 0.0999% 5.06 linear interpolation
33.7% 0.0999% 5.07 linear interpolation
33.8% 0.0999% 5.09 linear interpolation
33.9% 0.0999% 5.11 linear interpolation
34.0% 0.0999% 5.13 linear interpolation
34.1% 0.0999% 5.14 linear interpolation
34.2% 0.0999% 5.16 linear interpolation
34.3% 0.0999% 5.18 linear interpolation
34.4% 0.0999% 5.20 linear interpolation
34.5% 0.0999% 5.21 linear interpolation
34.6% 0.0999% 5.23 linear interpolation
34.7% 0.0999% 5.25 linear interpolation
34.8% 0.0999% 5.26 linear interpolation
34.9% 0.0999% 5.28 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
35.0% 0.0999% 5.30 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
35.1% 0.0999% 5.32 linear interpolation
35.2% 0.0999% 5.34 linear interpolation
35.3% 0.0999% 5.36 linear interpolation
35.4% 0.0999% 5.38 linear interpolation
35.5% 0.0999% 5.40 linear interpolation
35.6% 0.0999% 5.42 linear interpolation
35.7% 0.0999% 5.44 linear interpolation
35.8% 0.0999% 5.46 linear interpolation
35.9% 0.0999% 5.48 linear interpolation
36.0% 0.0999% 5.50 linear interpolation
36.1% 0.0999% 5.52 linear interpolation
36.2% 0.0999% 5.54 linear interpolation
36.3% 0.0999% 5.56 linear interpolation
36.4% 0.0999% 5.58 linear interpolation
36.5% 0.0999% 5.60 linear interpolation
36.6% 0.0999% 5.63 linear interpolation
36.7% 0.0999% 5.65 linear interpolation
36.8% 0.0999% 5.67 linear interpolation
36.9% 0.0999% 5.69 linear interpolation
37.0% 0.0999% 5.71 linear interpolation
37.1% 0.0999% 5.73 linear interpolation
37.2% 0.0999% 5.75 linear interpolation
37.3% 0.0999% 5.77 linear interpolation
37.4% 0.0999% 5.79 linear interpolation
37.5% 0.0999% 5.81 linear interpolation
37.6% 0.0999% 5.83 linear interpolation
37.7% 0.0999% 5.85 linear interpolation
37.8% 0.0999% 5.87 linear interpolation
37.9% 0.0999% 5.89 linear interpolation
38.0% 0.0999% 5.91 linear interpolation
38.1% 0.0999% 5.93 linear interpolation
38.2% 0.0999% 5.95 linear interpolation
38.3% 0.0999% 5.97 linear interpolation
38.4% 0.0999% 5.99 linear interpolation
38.5% 0.0999% 6.01 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
38.6% 0.0999% 6.03 linear interpolation
38.7% 0.0999% 6.05 linear interpolation
38.8% 0.0999% 6.07 linear interpolation
38.9% 0.0999% 6.09 linear interpolation
39.0% 0.0999% 6.11 linear interpolation
39.1% 0.0999% 6.13 linear interpolation
39.2% 0.0999% 6.15 linear interpolation
39.3% 0.0999% 6.17 linear interpolation
39.4% 0.0999% 6.19 linear interpolation
39.5% 0.0999% 6.21 linear interpolation
39.6% 0.0999% 6.23 linear interpolation
39.7% 0.0999% 6.26 linear interpolation
39.8% 0.0999% 6.28 linear interpolation
39.9% 0.0999% 6.30 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
40.0% 0.0999% 6.32 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
40.1% 0.0999% 6.34 linear interpolation
40.2% 0.0999% 6.36 linear interpolation
40.3% 0.0999% 6.38 linear interpolation
40.4% 0.0999% 6.41 linear interpolation
40.5% 0.0999% 6.43 linear interpolation
40.6% 0.0999% 6.45 linear interpolation
40.7% 0.0999% 6.48 linear interpolation
40.8% 0.0999% 6.50 linear interpolation
40.9% 0.0999% 6.52 linear interpolation
41.0% 0.0999% 6.54 linear interpolation
41.1% 0.0999% 6.57 linear interpolation
41.2% 0.0999% 6.59 linear interpolation
41.3% 0.0999% 6.61 linear interpolation
41.4% 0.0999% 6.63 linear interpolation
41.5% 0.0999% 6.66 linear interpolation
41.6% 0.0999% 6.68 linear interpolation
41.7% 0.0999% 6.70 linear interpolation
41.8% 0.0999% 6.73 linear interpolation
41.9% 0.0999% 6.75 linear interpolation
42.0% 0.0999% 6.77 linear interpolation
42.1% 0.0999% 6.79 linear interpolation
42.2% 0.0999% 6.82 linear interpolation
42.3% 0.0999% 6.84 linear interpolation
42.4% 0.0999% 6.86 linear interpolation
42.5% 0.0999% 6.88 linear interpolation
42.6% 0.0999% 6.91 linear interpolation
42.7% 0.0999% 6.93 linear interpolation
42.8% 0.0999% 6.95 linear interpolation
42.9% 0.0999% 6.98 linear interpolation
43.0% 0.0999% 7.00 linear interpolation
43.1% 0.0999% 7.02 linear interpolation
43.2% 0.0999% 7.04 linear interpolation
43.3% 0.0999% 7.07 linear interpolation
43.4% 0.0999% 7.09 linear interpolation
43.5% 0.0999% 7.11 linear interpolation
43.6% 0.0999% 7.14 linear interpolation
43.7% 0.0999% 7.16 linear interpolation
43.8% 0.0999% 7.18 linear interpolation
43.9% 0.0999% 7.20 linear interpolation
44.0% 0.0999% 7.23 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
44.1% 0.0999% 7.25 linear interpolation
44.2% 0.0999% 7.27 linear interpolation
44.3% 0.0999% 7.29 linear interpolation
44.4% 0.0999% 7.32 linear interpolation
44.5% 0.0999% 7.34 linear interpolation
44.6% 0.0999% 7.36 linear interpolation
44.7% 0.0999% 7.39 linear interpolation
44.8% 0.0999% 7.41 linear interpolation
44.9% 0.0999% 7.43 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
45.0% 0.0999% 7.45 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
45.1% 0.0999% 7.48 linear interpolation
45.2% 0.0999% 7.50 linear interpolation
45.3% 0.0999% 7.53 linear interpolation
45.4% 0.0999% 7.55 linear interpolation
45.5% 0.0999% 7.58 linear interpolation
45.6% 0.0999% 7.60 linear interpolation
45.7% 0.0999% 7.63 linear interpolation
45.8% 0.0999% 7.65 linear interpolation
45.9% 0.0999% 7.68 linear interpolation
46.0% 0.0999% 7.71 linear interpolation
46.1% 0.0999% 7.73 linear interpolation
46.2% 0.0999% 7.76 linear interpolation
46.3% 0.0999% 7.78 linear interpolation
46.4% 0.0999% 7.81 linear interpolation
46.5% 0.0999% 7.83 linear interpolation
46.6% 0.0999% 7.86 linear interpolation
46.7% 0.0999% 7.88 linear interpolation
46.8% 0.0999% 7.91 linear interpolation
46.9% 0.0999% 7.93 linear interpolation
47.0% 0.0999% 7.96 linear interpolation
47.1% 0.0999% 7.98 linear interpolation
47.2% 0.0999% 8.01 linear interpolation
47.3% 0.0999% 8.03 linear interpolation
47.4% 0.0999% 8.06 linear interpolation
47.5% 0.0999% 8.08 linear interpolation
47.6% 0.0999% 8.11 linear interpolation
47.7% 0.0999% 8.13 linear interpolation
47.8% 0.0999% 8.16 linear interpolation
47.9% 0.0999% 8.18 linear interpolation
48.0% 0.0999% 8.21 linear interpolation
48.1% 0.0999% 8.23 linear interpolation
48.2% 0.0999% 8.26 linear interpolation
48.3% 0.0999% 8.28 linear interpolation
48.4% 0.0999% 8.31 linear interpolation
48.5% 0.0999% 8.33 linear interpolation
48.6% 0.0999% 8.36 linear interpolation
48.7% 0.0999% 8.38 linear interpolation
48.8% 0.0999% 8.41 linear interpolation
48.9% 0.0999% 8.44 linear interpolation
49.0% 0.0999% 8.46 linear interpolation
49.1% 0.0999% 8.49 linear interpolation
49.2% 0.0999% 8.51 linear interpolation
49.3% 0.0999% 8.54 linear interpolation
49.4% 0.0999% 8.56 linear interpolation
49.5% 0.0999% 8.59 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
49.6% 0.0999% 8.61 linear interpolation
49.7% 0.0999% 8.64 linear interpolation
49.8% 0.0999% 8.66 linear interpolation
49.9% 0.0999% 8.69 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
50.0% 0.0999% 8.71 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
50.1% 0.0999% 8.74 linear interpolation
50.2% 0.0999% 8.77 linear interpolation
50.3% 0.0999% 8.80 linear interpolation
50.4% 0.0999% 8.83 linear interpolation
50.5% 0.0999% 8.86 linear interpolation
50.6% 0.0999% 8.89 linear interpolation
50.7% 0.0999% 8.92 linear interpolation
50.8% 0.0999% 8.95 linear interpolation
50.9% 0.0999% 8.98 linear interpolation
51.0% 0.0999% 9.01 linear interpolation
51.1% 0.0999% 9.04 linear interpolation
51.2% 0.0999% 9.07 linear interpolation
51.3% 0.0999% 9.10 linear interpolation
51.4% 0.0999% 9.13 linear interpolation
51.5% 0.0999% 9.15 linear interpolation
51.6% 0.0999% 9.18 linear interpolation
51.7% 0.0999% 9.21 linear interpolation
51.8% 0.0999% 9.24 linear interpolation
51.9% 0.0999% 9.27 linear interpolation
52.0% 0.0999% 9.30 linear interpolation
52.1% 0.0999% 9.33 linear interpolation
52.2% 0.0999% 9.36 linear interpolation
52.3% 0.0999% 9.39 linear interpolation
52.4% 0.0999% 9.42 linear interpolation
52.5% 0.0999% 9.45 linear interpolation
52.6% 0.0999% 9.48 linear interpolation
52.7% 0.0999% 9.51 linear interpolation
52.8% 0.0999% 9.54 linear interpolation
52.9% 0.0999% 9.57 linear interpolation
53.0% 0.0999% 9.60 linear interpolation
53.1% 0.0999% 9.63 linear interpolation
53.2% 0.0999% 9.66 linear interpolation
53.3% 0.0999% 9.69 linear interpolation
53.4% 0.0999% 9.72 linear interpolation
53.5% 0.0999% 9.75 linear interpolation
53.6% 0.0999% 9.77 linear interpolation
53.7% 0.0999% 9.80 linear interpolation
53.8% 0.0999% 9.83 linear interpolation
53.9% 0.0999% 9.86 linear interpolation
54.0% 0.0999% 9.89 linear interpolation
54.1% 0.0999% 9.92 linear interpolation
54.2% 0.0999% 9.95 linear interpolation
54.3% 0.0999% 9.98 linear interpolation
54.4% 0.0999% 10.0 linear interpolation
54.5% 0.0999% 10.0 linear interpolation
54.6% 0.0999% 10.1 linear interpolation
54.7% 0.0999% 10.1 linear interpolation
54.8% 0.0999% 10.1 linear interpolation
54.9% 0.0999% 10.2 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis

estimate from Ridolfi and Pacific Market Research (2015) using

55.0% 0.0999% 10.2 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
55.1% 0.0999% 10.2 linear interpolation
55.2% 0.0999% 10.3 linear interpolation
55.3% 0.0999% 10.3 linear interpolation
55.4% 0.0999% 10.3 linear interpolation
55.5% 0.0999% 10.4 linear interpolation
55.6% 0.0999% 10.4 linear interpolation
55.7% 0.0999% 10.4 linear interpolation
55.8% 0.0999% 10.5 linear interpolation
55.9% 0.0999% 10.5 linear interpolation
56.0% 0.0999% 10.5 linear interpolation
56.1% 0.0999% 10.6 linear interpolation
56.2% 0.0999% 10.6 linear interpolation
56.3% 0.0999% 10.7 linear interpolation
56.4% 0.0999% 10.7 linear interpolation
56.5% 0.0999% 10.7 linear interpolation
56.6% 0.0999% 10.8 linear interpolation
56.7% 0.0999% 10.8 linear interpolation
56.8% 0.0999% 10.8 linear interpolation
56.9% 0.0999% 10.9 linear interpolation
57.0% 0.0999% 10.9 linear interpolation
57.1% 0.0999% 10.9 linear interpolation
57.2% 0.0999% 11.0 linear interpolation
57.3% 0.0999% 11.0 linear interpolation
57.4% 0.0999% 11.0 linear interpolation
57.5% 0.0999% 111 linear interpolation
57.6% 0.0999% 111 linear interpolation
57.7% 0.0999% 11.2 linear interpolation
57.8% 0.0999% 11.2 linear interpolation
57.9% 0.0999% 11.2 linear interpolation
58.0% 0.0999% 11.3 linear interpolation
58.1% 0.0999% 11.3 linear interpolation
58.2% 0.0999% 11.3 linear interpolation
58.3% 0.0999% 114 linear interpolation
58.4% 0.0999% 114 linear interpolation
58.5% 0.0999% 114 linear interpolation
58.6% 0.0999% 115 linear interpolation
58.7% 0.0999% 115 linear interpolation
58.8% 0.0999% 115 linear interpolation
58.9% 0.0999% 11.6 linear interpolation
59.0% 0.0999% 11.6 linear interpolation
59.1% 0.0999% 11.7 linear interpolation
59.2% 0.0999% 11.7 linear interpolation
59.3% 0.0999% 11.7 linear interpolation
59.4% 0.0999% 11.8 linear interpolation
59.5% 0.0999% 11.8 linear interpolation
59.6% 0.0999% 11.8 linear interpolation
59.7% 0.0999% 11.9 linear interpolation
59.8% 0.0999% 11.9 linear interpolation
59.9% 0.0999% 11.9 linear interpolation
estimate from Ridolfi and Pacific Market Research (2015) using
60.0% 0.0999% 12.0 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
60.1% 0.0999% 12.0 linear interpolation
60.2% 0.0999% 121 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
60.3% 0.0999% 12.1 linear interpolation
60.4% 0.0999% 12.1 linear interpolation
60.5% 0.0999% 12.2 linear interpolation
60.6% 0.0999% 12.2 linear interpolation
60.7% 0.0999% 12.3 linear interpolation
60.8% 0.0999% 12.3 linear interpolation
60.9% 0.0999% 12.3 linear interpolation
61.0% 0.0999% 12.4 linear interpolation
61.1% 0.0999% 12.4 linear interpolation
61.2% 0.0999% 12.5 linear interpolation
61.3% 0.0999% 12.5 linear interpolation
61.4% 0.0999% 12.6 linear interpolation
61.5% 0.0999% 12.6 linear interpolation
61.6% 0.0999% 12.6 linear interpolation
61.7% 0.0999% 12.7 linear interpolation
61.8% 0.0999% 12.7 linear interpolation
61.9% 0.0999% 12.8 linear interpolation
62.0% 0.0999% 12.8 linear interpolation
62.1% 0.0999% 12.8 linear interpolation
62.2% 0.0999% 12.9 linear interpolation
62.3% 0.0999% 12.9 linear interpolation
62.4% 0.0999% 13.0 linear interpolation
62.5% 0.0999% 13.0 linear interpolation
62.6% 0.0999% 13.0 linear interpolation
62.7% 0.0999% 131 linear interpolation
62.8% 0.0999% 131 linear interpolation
62.9% 0.0999% 13.2 linear interpolation
63.0% 0.0999% 13.2 linear interpolation
63.1% 0.0999% 13.3 linear interpolation
63.2% 0.0999% 13.3 linear interpolation
63.3% 0.0999% 13.3 linear interpolation
63.4% 0.0999% 134 linear interpolation
63.5% 0.0999% 134 linear interpolation
63.6% 0.0999% 135 linear interpolation
63.7% 0.0999% 135 linear interpolation
63.8% 0.0999% 135 linear interpolation
63.9% 0.0999% 13.6 linear interpolation
64.0% 0.0999% 13.6 linear interpolation
64.1% 0.0999% 13.7 linear interpolation
64.2% 0.0999% 13.7 linear interpolation
64.3% 0.0999% 13.7 linear interpolation
64.4% 0.0999% 13.8 linear interpolation
64.5% 0.0999% 13.8 linear interpolation
64.6% 0.0999% 13.9 linear interpolation
64.7% 0.0999% 13.9 linear interpolation
64.8% 0.0999% 14.0 linear interpolation
64.9% 0.0999% 14.0 linear interpolation
estimate from Ridolfi and Pacific Market Research (2015) using

65.0% 0.0999% 14.0 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species

65.1% 0.0999% 141 linear interpolation

65.2% 0.0999% 141 linear interpolation

65.3% 0.0999% 14.2 linear interpolation

65.4% 0.0999% 14.2 linear interpolation

65.5% 0.0999% 14.3 linear interpolation

65.6% 0.0999% 14.3 linear interpolation

65.7% 0.0999% 14.4 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
65.8% 0.0999% 145 linear interpolation
65.9% 0.0999% 145 linear interpolation
66.0% 0.0999% 14.6 linear interpolation
66.1% 0.0999% 14.6 linear interpolation
66.2% 0.0999% 14.7 linear interpolation
66.3% 0.0999% 14.7 linear interpolation
66.4% 0.0999% 14.8 linear interpolation
66.5% 0.0999% 14.8 linear interpolation
66.6% 0.0999% 14.9 linear interpolation
66.7% 0.0999% 14.9 linear interpolation
66.8% 0.0999% 15.0 linear interpolation
66.9% 0.0999% 15.0 linear interpolation
67.0% 0.0999% 151 linear interpolation
67.1% 0.0999% 151 linear interpolation
67.2% 0.0999% 15.2 linear interpolation
67.3% 0.0999% 15.2 linear interpolation
67.4% 0.0999% 15.3 linear interpolation
67.5% 0.0999% 15.3 linear interpolation
67.6% 0.0999% 154 linear interpolation
67.7% 0.0999% 154 linear interpolation
67.8% 0.0999% 155 linear interpolation
67.9% 0.0999% 155 linear interpolation
68.0% 0.0999% 15.6 linear interpolation
68.1% 0.0999% 15.6 linear interpolation
68.2% 0.0999% 15.7 linear interpolation
68.3% 0.0999% 15.7 linear interpolation
68.4% 0.0999% 15.8 linear interpolation
68.5% 0.0999% 15.8 linear interpolation
68.6% 0.0999% 15.9 linear interpolation
68.7% 0.0999% 16.0 linear interpolation
68.8% 0.0999% 16.0 linear interpolation
68.9% 0.0999% 16.1 linear interpolation
69.0% 0.0999% 16.1 linear interpolation
69.1% 0.0999% 16.2 linear interpolation
69.2% 0.0999% 16.2 linear interpolation
69.3% 0.0999% 16.3 linear interpolation
69.4% 0.0999% 16.3 linear interpolation
69.5% 0.0999% 16.4 linear interpolation
69.6% 0.0999% 16.4 linear interpolation
69.7% 0.0999% 16.5 linear interpolation
69.8% 0.0999% 16.5 linear interpolation
69.9% 0.0999% 16.6 linear interpolation
estimate from Ridolfi and Pacific Market Research (2015) using

70.0% 0.0999% 16.6 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species

70.1% 0.0999% 16.7 linear interpolation

70.2% 0.0999% 16.8 linear interpolation

70.3% 0.0999% 16.8 linear interpolation

70.4% 0.0999% 16.9 linear interpolation

70.5% 0.0999% 16.9 linear interpolation

70.6% 0.0999% 17.0 linear interpolation

70.7% 0.0999% 171 linear interpolation

70.8% 0.0999% 171 linear interpolation

70.9% 0.0999% 17.2 linear interpolation

71.0% 0.0999% 17.3 linear interpolation

71.1% 0.0999% 17.3 linear interpolation

71.2% 0.0999% 17.4 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
71.3% 0.0999% 17.4 linear interpolation
71.4% 0.0999% 175 linear interpolation
71.5% 0.0999% 17.6 linear interpolation
71.6% 0.0999% 17.6 linear interpolation
71.7% 0.0999% 17.7 linear interpolation
71.8% 0.0999% 17.8 linear interpolation
71.9% 0.0999% 17.8 linear interpolation
72.0% 0.0999% 17.9 linear interpolation
72.1% 0.0999% 17.9 linear interpolation
72.2% 0.0999% 18.0 linear interpolation
72.3% 0.0999% 18.1 linear interpolation
72.4% 0.0999% 18.1 linear interpolation
72.5% 0.0999% 18.2 linear interpolation
72.6% 0.0999% 18.3 linear interpolation
72.7% 0.0999% 18.3 linear interpolation
72.8% 0.0999% 184 linear interpolation
72.9% 0.0999% 185 linear interpolation
73.0% 0.0999% 18.5 linear interpolation
73.1% 0.0999% 18.6 linear interpolation
73.2% 0.0999% 18.6 linear interpolation
73.3% 0.0999% 18.7 linear interpolation
73.4% 0.0999% 18.8 linear interpolation
73.5% 0.0999% 18.8 linear interpolation
73.6% 0.0999% 18.9 linear interpolation
73.7% 0.0999% 19.0 linear interpolation
73.8% 0.0999% 19.0 linear interpolation
73.9% 0.0999% 19.1 linear interpolation
74.0% 0.0999% 19.1 linear interpolation
74.1% 0.0999% 19.2 linear interpolation
74.2% 0.0999% 19.3 linear interpolation
74.3% 0.0999% 19.3 linear interpolation
74.4% 0.0999% 194 linear interpolation
74.5% 0.0999% 195 linear interpolation
74.6% 0.0999% 195 linear interpolation
74.7% 0.0999% 19.6 linear interpolation
74.8% 0.0999% 19.6 linear interpolation
74.9% 0.0999% 19.7 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
75.0% 0.0999% 19.8 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
75.1% 0.0999% 19.9 linear interpolation
75.2% 0.0999% 19.9 linear interpolation
75.3% 0.0999% 20.0 linear interpolation
75.4% 0.0999% 20.1 linear interpolation
75.5% 0.0999% 20.2 linear interpolation
75.6% 0.0999% 20.3 linear interpolation
75.7% 0.0999% 20.3 linear interpolation
75.8% 0.0999% 20.4 linear interpolation
75.9% 0.0999% 20.5 linear interpolation
76.0% 0.0999% 20.6 linear interpolation
76.1% 0.0999% 20.6 linear interpolation
76.2% 0.0999% 20.7 linear interpolation
76.3% 0.0999% 20.8 linear interpolation
76.4% 0.0999% 20.9 linear interpolation
76.5% 0.0999% 21.0 linear interpolation
76.6% 0.0999% 21.0 linear interpolation
76.7% 0.0999% 211 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
76.8% 0.0999% 21.2 linear interpolation
76.9% 0.0999% 21.3 linear interpolation
77.0% 0.0999% 214 linear interpolation
77.1% 0.0999% 214 linear interpolation
77.2% 0.0999% 215 linear interpolation
77.3% 0.0999% 21.6 linear interpolation
77.4% 0.0999% 21.7 linear interpolation
77.5% 0.0999% 21.8 linear interpolation
77.6% 0.0999% 21.8 linear interpolation
77.7% 0.0999% 219 linear interpolation
77.8% 0.0999% 22.0 linear interpolation
77.9% 0.0999% 221 linear interpolation
78.0% 0.0999% 22.2 linear interpolation
78.1% 0.0999% 22.2 linear interpolation
78.2% 0.0999% 22.3 linear interpolation
78.3% 0.0999% 224 linear interpolation
78.4% 0.0999% 225 linear interpolation
78.5% 0.0999% 22.6 linear interpolation
78.6% 0.0999% 22.6 linear interpolation
78.7% 0.0999% 22.7 linear interpolation
78.8% 0.0999% 22.8 linear interpolation
78.9% 0.0999% 22.9 linear interpolation
79.0% 0.0999% 23.0 linear interpolation
79.1% 0.0999% 23.0 linear interpolation
79.2% 0.0999% 231 linear interpolation
79.3% 0.0999% 23.2 linear interpolation
79.4% 0.0999% 23.3 linear interpolation
79.5% 0.0999% 234 linear interpolation
79.6% 0.0999% 234 linear interpolation
79.7% 0.0999% 235 linear interpolation
79.8% 0.0999% 23.6 linear interpolation
79.9% 0.0999% 23.7 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
80.0% 0.0999% 23.8 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
80.1% 0.0999% 23.9 linear interpolation
80.2% 0.0999% 24.0 linear interpolation
80.3% 0.0999% 241 linear interpolation
80.4% 0.0999% 24.2 linear interpolation
80.5% 0.0999% 24.3 linear interpolation
80.6% 0.0999% 24.4 linear interpolation
80.7% 0.0999% 24.6 linear interpolation
80.8% 0.0999% 24.7 linear interpolation
80.9% 0.0999% 24.8 linear interpolation
81.0% 0.0999% 24.9 linear interpolation
81.1% 0.0999% 25.0 linear interpolation
81.2% 0.0999% 25.1 linear interpolation
81.3% 0.0999% 25.2 linear interpolation
81.4% 0.0999% 254 linear interpolation
81.5% 0.0999% 255 linear interpolation
81.6% 0.0999% 25.6 linear interpolation
81.7% 0.0999% 25.7 linear interpolation
81.8% 0.0999% 25.8 linear interpolation
81.9% 0.0999% 25.9 linear interpolation
82.0% 0.0999% 26.0 linear interpolation
82.1% 0.0999% 26.2 linear interpolation
82.2% 0.0999% 26.3 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
82.3% 0.0999% 26.4 linear interpolation
82.4% 0.0999% 26.5 linear interpolation
82.5% 0.0999% 26.6 linear interpolation
82.6% 0.0999% 26.7 linear interpolation
82.7% 0.0999% 26.8 linear interpolation
82.8% 0.0999% 27.0 linear interpolation
82.9% 0.0999% 271 linear interpolation
83.0% 0.0999% 27.2 linear interpolation
83.1% 0.0999% 27.3 linear interpolation
83.2% 0.0999% 274 linear interpolation
83.3% 0.0999% 275 linear interpolation
83.4% 0.0999% 27.6 linear interpolation
83.5% 0.0999% 27.8 linear interpolation
83.6% 0.0999% 27.9 linear interpolation
83.7% 0.0999% 28.0 linear interpolation
83.8% 0.0999% 28.1 linear interpolation
83.9% 0.0999% 28.2 linear interpolation
84.0% 0.0999% 28.3 linear interpolation
84.1% 0.0999% 284 linear interpolation
84.2% 0.0999% 28.6 linear interpolation
84.3% 0.0999% 28.7 linear interpolation
84.4% 0.0999% 28.8 linear interpolation
84.5% 0.0999% 28.9 linear interpolation
84.6% 0.0999% 29.0 linear interpolation
84.7% 0.0999% 29.1 linear interpolation
84.8% 0.0999% 29.2 linear interpolation
84.9% 0.0999% 294 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
85.0% 0.0999% 295 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
85.1% 0.0999% 29.7 linear interpolation
85.2% 0.0999% 29.8 linear interpolation
85.3% 0.0999% 30.0 linear interpolation
85.4% 0.0999% 30.2 linear interpolation
85.5% 0.0999% 30.4 linear interpolation
85.6% 0.0999% 30.6 linear interpolation
85.7% 0.0999% 30.7 linear interpolation
85.8% 0.0999% 30.9 linear interpolation
85.9% 0.0999% 31.1 linear interpolation
86.0% 0.0999% 31.3 linear interpolation
86.1% 0.0999% 315 linear interpolation
86.2% 0.0999% 31.7 linear interpolation
86.3% 0.0999% 31.8 linear interpolation
86.4% 0.0999% 32.0 linear interpolation
86.5% 0.0999% 32.2 linear interpolation
86.6% 0.0999% 32.4 linear interpolation
86.7% 0.0999% 32.6 linear interpolation
86.8% 0.0999% 32.8 linear interpolation
86.9% 0.0999% 32.9 linear interpolation
87.0% 0.0999% 33.1 linear interpolation
87.1% 0.0999% 33.3 linear interpolation
87.2% 0.0999% 33.5 linear interpolation
87.3% 0.0999% 33.7 linear interpolation
87.4% 0.0999% 33.8 linear interpolation
87.5% 0.0999% 34.0 linear interpolation
87.6% 0.0999% 34.2 linear interpolation
87.7% 0.0999% 34.4 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
87.8% 0.0999% 34.6 linear interpolation
87.9% 0.0999% 34.8 linear interpolation
88.0% 0.0999% 34.9 linear interpolation
88.1% 0.0999% 35.1 linear interpolation
88.2% 0.0999% 35.3 linear interpolation
88.3% 0.0999% 35.5 linear interpolation
88.4% 0.0999% 35.7 linear interpolation
88.5% 0.0999% 35.8 linear interpolation
88.6% 0.0999% 36.0 linear interpolation
88.7% 0.0999% 36.2 linear interpolation
88.8% 0.0999% 36.4 linear interpolation
88.9% 0.0999% 36.6 linear interpolation
89.0% 0.0999% 36.8 linear interpolation
89.1% 0.0999% 36.9 linear interpolation
89.2% 0.0999% 37.1 linear interpolation
89.3% 0.0999% 37.3 linear interpolation
89.4% 0.0999% 37.5 linear interpolation
89.5% 0.0999% 37.7 linear interpolation
89.6% 0.0999% 37.8 linear interpolation
89.7% 0.0999% 38.0 linear interpolation
89.8% 0.0999% 38.2 linear interpolation
89.9% 0.0999% 38.4 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
90.0% 0.0999% 38.6 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
90.1% 0.0999% 38.9 linear interpolation
90.2% 0.0999% 39.3 linear interpolation
90.3% 0.0999% 39.7 linear interpolation
90.4% 0.0999% 40.0 linear interpolation
90.5% 0.0999% 40.4 linear interpolation
90.6% 0.0999% 40.7 linear interpolation
90.7% 0.0999% 41.1 linear interpolation
90.8% 0.0999% 41.5 linear interpolation
90.9% 0.0999% 41.8 linear interpolation
91.0% 0.0999% 42.2 linear interpolation
91.1% 0.0999% 42.5 linear interpolation
91.2% 0.0999% 42.9 linear interpolation
91.3% 0.0999% 43.3 linear interpolation
91.4% 0.0999% 43.6 linear interpolation
91.5% 0.0999% 44.0 linear interpolation
91.6% 0.0999% 44.3 linear interpolation
91.7% 0.0999% 44.7 linear interpolation
91.8% 0.0999% 45.1 linear interpolation
91.9% 0.0999% 45.4 linear interpolation
92.0% 0.0999% 45.8 linear interpolation
92.1% 0.0999% 46.1 linear interpolation
92.2% 0.0999% 46.5 linear interpolation
92.3% 0.0999% 46.9 linear interpolation
92.4% 0.0999% 47.2 linear interpolation
92.5% 0.0999% 47.6 linear interpolation
92.6% 0.0999% 47.9 linear interpolation
92.7% 0.0999% 48.3 linear interpolation
92.8% 0.0999% 48.7 linear interpolation
92.9% 0.0999% 49.0 linear interpolation
93.0% 0.0999% 49.4 linear interpolation
93.1% 0.0999% 49.8 linear interpolation
93.2% 0.0999% 50.1 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
93.3% 0.0999% 50.5 linear interpolation
93.4% 0.0999% 50.8 linear interpolation
93.5% 0.0999% 51.2 linear interpolation
93.6% 0.0999% 51.6 linear interpolation
93.7% 0.0999% 51.9 linear interpolation
93.8% 0.0999% 52.3 linear interpolation
93.9% 0.0999% 52.6 linear interpolation
94.0% 0.0999% 53.0 linear interpolation
94.1% 0.0999% 53.4 linear interpolation
94.2% 0.0999% 53.7 linear interpolation
94.3% 0.0999% 54.1 linear interpolation
94.4% 0.0999% 54.4 linear interpolation
94.5% 0.0999% 54.8 linear interpolation
94.6% 0.0999% 55.2 linear interpolation
94.7% 0.0999% 55.5 linear interpolation
94.8% 0.0999% 55.9 linear interpolation
94.9% 0.0999% 56.2 linear interpolation

estimate from Ridolfi and Pacific Market Research (2015) using
95.0% 0.0999% 58.9 the NCI method; adjusted by Idaho DEQ to account for exclusion
of select species
95.1% 0.0999% 60.4 linear interpolation
95.2% 0.0999% 62.0 linear interpolation
95.3% 0.0999% 63.6 linear interpolation
95.4% 0.0999% 65.3 linear interpolation
95.5% 0.0999% 67.1 linear interpolation
95.6% 0.0999% 69.0 linear interpolation
95.7% 0.0999% 71.0 linear interpolation
95.8% 0.0999% 73.1 linear interpolation
95.9% 0.0999% 75.3 linear interpolation
96.0% 0.0999% 775 linear interpolation
96.1% 0.0999% 79.9 linear interpolation
96.2% 0.0999% 82.4 linear interpolation
96.3% 0.0999% 85.0 linear interpolation
96.4% 0.0999% 87.8 linear interpolation
96.5% 0.0999% 90.6 linear interpolation
96.6% 0.0999% 93.6 linear interpolation
96.7% 0.0999% 96.7 linear interpolation
96.8% 0.0999% 99.9 linear interpolation
96.9% 0.0999% 103 linear interpolation
97.0% 0.0999% 107 linear interpolation
97.1% 0.0999% 110 linear interpolation
97.2% 0.0999% 114 linear interpolation
97.3% 0.0999% 118 linear interpolation
97.4% 0.0999% 122 linear interpolation
97.5% 0.0999% 127 linear interpolation
97.6% 0.0999% 131 linear interpolation
97.7% 0.0999% 136 linear interpolation
97.8% 0.0999% 141 linear interpolation
97.9% 0.0999% 146 linear interpolation
98.0% 0.0999% 151 linear interpolation
98.1% 0.0999% 156 linear interpolation
98.2% 0.0999% 162 linear interpolation
98.3% 0.0999% 168 linear interpolation
98.4% 0.0999% 174 linear interpolation
98.5% 0.0999% 180 linear interpolation
98.6% 0.0999% 187 linear interpolation
98.7% 0.0999% 193 linear interpolation
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Table A3. IDEQ Interpolated Idaho Fish Consumption Distribution for the Nez Perce Tribal Population

Percentile Discrete Probability FCR (g/day) Basis
98.8% 0.0999% 200 linear interpolation
98.9% 0.0999% 208 linear interpolation
99.0% 0.0999% 215 linear interpolation
99.1% 0.0999% 223 linear interpolation
99.2% 0.0999% 231 linear interpolation
99.3% 0.0999% 239 linear interpolation
99.4% 0.0999% 248 linear interpolation
99.5% 0.0999% 257 linear interpolation
99.6% 0.0999% 266 linear interpolation
99.7% 0.0999% 275 linear interpolation
99.8% 0.0999% 285 linear interpolation
99.9% 0.0999% 295 linear interpolation
100% 0.0999% 306 estimated maximum value
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Appendix B
Target Excess Lifetime Cancer Risks Commonly Used in Practice

Michele Amaral, Katy Baker and Brian Magee (ARCADIS)

Introduction United States European Union Policy decisions

The stated goal of environmental The target ELCR risk range in the United Concerted Action on Risk Assessment for Good evidence exists that acceptable ELCRs are
management programs is almost States is between 1x104 to 1x10 for Contaminated Sites (CARACAS, 1998) and influenced by policy decisions and other political
unifor?nly to pr%tegct human health and the decision making purposes. Table 1 = 1x104 * The general tendency is for states to regulate cumulative ELCRs the European Comm(ission Joint Resea)nrch elements, suycﬁ as ¥he receptor at risk (Pfovoost et al.,
environment. However, the standard for summarizes state-specific individual and B = 1x10°5 5 e (gl T eielsry i elnllisfers I inie s nlte] 1 it el elve] Centre (2007) reported that the tolerable 2006), along with scientific evidence. For example, the
defining this goal is not as clear. A cumulative target ELCRs gathered in the last I = 1x10% M - 1xt0 o el ELCRS (Hleles 1 sl 2); Notes: ELCR typically used in the context of current USEPA National Primary Drinking Water
common misconceptiop iS assumin.g that Six months from onlineT sources. ELCR data T = 1x106 or 1x105 =>1x106 or <1x10+4 * The review shows that most states reviewed (57%) select 1x10¢ ELCR Excess lifetime cancer risk expressed genotoxic carcinoge;ns on contaminated ﬂtes Regulati_ons or primary standardg, such as Ma>.<imum
routine regulatory practlc_e. makes risk- were gvallable on the internet for 50 states. J B as an individual constituent target ELCR for a “Tier 1” type of risk- o ES 1x10% (onle-m-ong m|III|onI) in the European Union re41nges from 1x10 Contaminant Levels (MCL_s) applllc_able to publlc water
based management decisions for American Samoa, Northern Marianas S based screen. A Ng‘(';?/g:;i?éa SEEETThE) e (e.g., Denmark) to 1x10* per substance systems are based on policy decisions which
carcinogens solely on a total site excess Islands, Puerto Rico and the Virgin Islands Fioure 1. Taraet individual : SECAP = Rk EElveen Caresiie Aslen Pressi (Netherlands), with the majority of countries incorporate social, economic and best available
lifetime cancer risk (ELCR) equal to one are also included in the summary. g it ) tEgLCR N Figure 2. Target » 92% of states reviewed use cumulative target ELCRs exceeding preferring 1x10-°. In the UK, an acceptable technology considerations and not target ELCRs. This
additional cancer case in an exposed 579% constitien S cumulative ELCRs 1x10 to allow for flexibility in decision making. Data were obtained from only internet searches. risk level has not been defined because policy appears to be changing with EPA’'s recent
population of one million (1x10). In “Includes only those states with guidance available on the nternet, margin of safety approaches are used for proposal to set MCLs for groups of related chemicals
practice, government agencies typically both carcinogenic and noncarcinogenic on a cumulative risk basis. Also, the WHO air
establish a target ELCR exceeding 1x10-6 State Individual ELCR(s) | Cumulative ELCR(s) Comments State Individual ELCR(s) | Cumulative ELCR(s) Comments criteria instead of calculating ELCR levels as constituent concentrations are presented for 1x10-4,

] . _5 _6 . g .
to protect human health and the Alabama 1x10-6 or 1x10-5 s Preliminary screening levels based on 1x10-%, risk management evaluations based on 1x10-° Montana 1x106 1x10-5 Risk-based screening levels for surface, subsurface and groundwater done in other countries. 1x10"> and 1x10 target ELCRs to enable ﬂeXIbIIIty in

environment and to take remedial actions, - - _ - - - _ _ _ _ decision-making.
both on a per chemical basis and a total Alaska 1x10 1x10 Alternative cleanup levels based on 1x10 Nebraska MCL, 1x106or 1x10 NA Risk-based screening levels targets are variable depending on complete exposure pathways

site risk basis. Target ELCRs set by state, American Samoa NA NA Nevada 1x10 1x10° Basic comparison levels
national and international agencies have Arizona 1x106 or 1x10-5 >1x10-% and <1x10+ May use 1x10-% individual ELCR if constituent is not a human carcinogen or site not used for child care New Hampshire 1x10-6 NA Risk-based soil values, values available for three levels of exposure (S-1 to S-3), including recreator

B - 1x10% or 1x104

o International Conclusions
been collated, and the policies of some Arkansas 1x106 >1x10-6 and <1x10- Region 6 human health medium-specific screening levels New Jersey 1x106 NA Soil cleanup criteria

agencies that are utilizing risk-based o o
9 J California 1x106 >1x10¢ and <1x10 California human health screening levels New Mexico 1x10-5 1x106 Soil screening levels * The World Health Organization (2011) drinking

approaches that incorporate socio t lit ideli based t t  As use of risk-based approaches to make future
) ) . . ) : - " - - water quality guidelines are based on a targe site environmental management decisions
economic, geographic and political Colorado 1x106 NA Soil evaluation values New York 1x10-6 1x10-6 Soil cleanup objectives and water standards, cumulative ELCR inferred ELCR of 1x10-5. g

factors to promote cost-effective Connecticut 1x106 1x10-° Water quality standards, remediation standards regulations North Carolina 1x10-6 >1x10-% and <1x10+ Soil remediation goals, risk range allowed for soil with a deed restriction and for groundwater if contained on site. continues, the need for ConSIStenCy = becommg

remediation are discussed e 100 105 ot st North Dkt " " S R * New Zealand (New Zealand Ministry for the more apparent (ITRC, 2008).
. elaware X10- X10- emediation standards or akKota eanup action level guiaelines . : : :
Environment, 2010), Mexico, Brazil, China « Acceptable ELCRs range from 1x10-4 to 1x10-6

District of Columbia 1x106 NA Tier 1 risk-based screening levels, 2A and 2B site-specific target levels are based on 1x10-6 Northern Marianas Islands 1x106 or 1x10-° >1x10-6 and <1x10-4 Pacific Basin ESLs, individual ELCR for soil direct contact PAHs and PCBs and vapor intrusion risk for TCE is 1x10-° (PRC, 1999), South Africa and Thailand (PCD, globally, but many countries, including those
Florida 1x10- 1x10- Contaminant cleanup target levels Ohio 1x10-6 >1x106 and <1x10-4 U.S. Environmental Protection Agency regional screening levels 2004) commonly use a target ELCR of 1x10-°. it ne\;vly developing risk-b,ased programs

Georgia 1x105 1x105 Environmental Protection Division Risk Reduction Standards Oklahoma 1x105 1x104 Risk-based screening levels » Canadian Soil Quality Guidelines (CCME, typically select a cumulative ELCR of 1x10-°.

Guam 1x10-6 or 1x10-5 >1x10-6 and <1x10- Pacific Basin ESLs, individual ELCR for soil direct contact select constituents and vapor intrusion risk for TCE is 1x10-5 Oregon 1x10-6 1x10-5 Risk-based concentrations 2006) are based on the more conservative of - Potential benefits of using ELCRs exceeding

either human health or ecological receptors. . 1x10-6 for decision making purposes include
For human exposures target ELCRs of 1x10- flexibility within risk-based corrective action

and 1x10 are used. programs and prioritization of remedial actions
* Australia has no formal policy regarding the where the greatest potential for risk reduction

level of acceptable risk. However, common exists allowing for better allocation of technical
lowa 1x10-5 1x10-4 Targets found in supporting information South Dakota 1x10-5 NA Surface soil for benzene, toluene, ethylbenzene, xylenes, methyl tertiary butyl ether and naphthalene only practice has been to use an ELCR of 1x10-° and financial resources.

Hawaii 1x10-6 or 1x10-5 >1x10-6 and <1x10- Pacific Basin ESLs, individual ELCR for soil direct contact select constituents and vapor intrusion risk for TCE is 1x10-° Pennsylvania 1x10-5 >1x10%6 and <1x10- Medium specific concentrations, risk range allowed for both USTs and general Act 2 (voluntary) sites

Idaho 1x106 s Initial default target levels Puerto Rico NA NA

lllinois 1x106 1x10+4 Risk-based cleanup objectives, cumulative ELCR only discussed for groundwater objectives 742.805(d) Rhode Island NA NA

Indiana 1x10-5 NA Risk Integrated System of Closure (RISC) default soil closure tables, cumulative risk not discussed South Carolina 1x106 >1x10%6 and <1x10- Risk-based screening level, Tier-3 risk levels higher than 1x10-¢ may be allowed

Review Process Kansas 1x105 NA Tier 2 risk-based standards Tennessee 1x105 1x105 or 1x104 Risk-based cleanup levels, site-specific target levels at 1x10-5 for residential and 1x10 for commercial worker (Friebel and Nadebaum, 2010).

A literature and online review was Kentucky 1x10-6 >1x106 and <1x10+4 Follows 2002 preliminary remediation goals Texas 1x105 1x104 Protective concentrations levels
undertaken, and information was Louisiana 1x106 >1x10-6 and <1x10-4 RECAP screening standards, management option 3 risk levels higher than 1x10-6 may be allowed Utah 1x10-6 or other NA Risk-based screening levels (for petroleum sites)

Obtam.ed from local risk assessment Maine 1x10-6 1x10-5 Has guidelines for soil, groundwater, oil and ambient air Vermont 1x10-6 NA Draft soil screening values
practitioners in the ARCADIS global 210° for ool and 1x10% for — p—_ o

x10- [ x10- : irgini x10- x10-
network to collate acceptable ELCRs for UETEDT S ——— 1x10-4 Hot spot defined as >1x104 g
the United States, the European Union Virgin Islands NA NA

and elsewhere.

-6 -5 f .
Massachusetts 1x10 1x10 Massachusetts Contingency Plan 310 Code of Massachusetts Regulations 40.0902(2)(b) Washington 1x10°6 1x105 Standard and modified Method B cleanup levels, Method C levels are based on 1x105 Recommendations

Michigan 1x10 NA e West Virginia 1x10-6 or 1x10-° 1x104 For individual ELCR, 1x10% is used for residential receptors and 1x10-% is used for commercial/industrial receptors

i -5 -5 i . 0 0 g g 9 A
ITIESO ] LS 2L 0l EIEENES VEINDE Wisconsin 1x10-6 1x10-5 For direct contact with arsenic and chromium-6 the individual ELCR is 1x10-7 _Ur?derStar?dmg th_e basis for ”Sk'bgsed CleanUp criteria and risk management decisions
is imperative to site managers. Ultimately, the goals should be to protect human health
and the environment, but in a cost-effective and technically defensible manner.

. P o . . . . P
Mississippi 1x10 1x10 Target remediation goals, Tier 1 to Tier 3 is 1x10 Wyoming 1x10°6 ~1x106 and <1x10 Sl e e

Missouri s 1x104 Risk-based target levels

AR CADI S References provided on separate handout
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DERIVATION OF ALTERNATE RELATIVE SOURCE CONTRIBUTION FACTORS

1 INTRODUCTION

On October 7, 2015, the Idaho Department of Environmental Quality (IDEQ) released its draft human
health ambient water quality criteria (HHAWQC) rule. The draft HHAWQC were calculated using relative
source contribution (RSC) factors adopted from the 2015 United States Environmental Protection Agency
(USEPA) update of HHAWQC (USEPA 2015). The recent USEPA guidance (2015) and the proposed
IDEQ draft HHAWQC recommend using an RSC factor to account for non-ambient exposures when
deriving human health water quality criteria (HHWQC) for non-carcinogens. The RSCs can be based on
chemical-specific information or on an arbitrary default value of 0.2 when the USEPA determines that data
or resources are not available to derive reliable quantitative estimates for all (surface water and non-
surface water) relevant exposure pathways. However, if exposure estimates are available for all non-
surface water related exposure pathways, the remaining exposure below the allowable daily intake or
exposure (typically the reference dose, RfD) can be conservatively allocated to surface water sources.

This report presents the calculation of chemical-specific RSCs for the following 11 compounds:
acenaphthalene, anthracene, fluoranthene, fluorene, pyrene, 2-chlorophenol, selenium, diethyl phthalate,
chloroform, butylbenzyl phthalate (BBP) and toluene. The recent USEPA updated HHAWQC (USEPA
2015) concluded that insufficient data are available to derive exposure estimates for all 11 of these
compounds and have thus incorporated the default RSC of 0.2 in the calculation of each HHAWQC.
Contrary to USEPA'’s conclusions and consistent with the recent information compiled by the Florida
Department of Environmental Protection (FDEP 2014), Arcadis determined that sufficient data are
available to develop conservative estimates of non-surface water exposures and robust, scientifically
defensible and conservative RSCs. As summarized in the table below, the Arcadis derived RSCs are
greater than the default RSC of 0.2. Using the chemical-specific RSCs results in HHAWQC that are 2 to 5
times greater than HHAWQC derived using a default RSC. Arcadis recommends that final Idaho
HHAWQC for these eleven compounds incorporate the RSCs derived in this report.

IDEQ Draft Arcadis Idaho Draft Idaho Dr.aft HHAWQC adjusted

Compound RSCs Proposed HHAWQC with Arcadis RSC

RSCs (ug/L) (ug/L)
Acenaphthene 0.2 0.99 78 386
Anthracene 0.2 1.0 340 1700
Fluoranthene 0.2 1.0 20 100
Fluorene 0.2 0.99 51 252
Pyrene 0.2 1.0 26 130
2-chlorophenol 0.2 0.91 19 86
Selenium 0.2 0.65 20 65
Diethyl phthalate 0.2 0.97 620 3007
Chloroform 0.2 0.64 39 125
Toluene 0.2 0.31 36 56
Butylbenzyl phthalate 0.2 0.99 0.11 0.54
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Appendix A RSC_4Nov2015.docx



DERIVATION OF ALTERNATE RELATIVE SOURCE CONTRIBUTION FACTORS

2  NON-CARCINOGENIC PAHS

The recent 2015 USEPA Update of HHAWQC (USEPA 2015) selects an RSC of 0.2 for the following five
polycyclic aromatic hydrocarbons (PAHSs) that are considered to be non-carcinogenic: acenaphthene,
anthracene, fluoranthene, fluorene, and pyrene. USEPA (2015) indicates that information is not available
to quantitatively characterize exposure from all potentially significant sources of PAHs. According to the
USEPA (2000), relevant sources and pathways for consideration in the RSC include both ingestion and
routes other than oral for water-related exposures and non-water sources of exposure, including ingestion
exposures (e.g., food), inhalation, and/or dermal. In 2014, the FDEP conducted an extensive review of the
information available on exposure to these five non-carcinogenic PAHs. As a result of that review FDEP
derived the following RSCs:

PAH FDEP (2014) RSC \
Acenaphthene 0.95
Anthracene 1
Fluoranthene 0.99

Fluorene 0.92

Pyrene 0.99

Arcadis reviewed information relevant to the derivation of an RSC for acenaphthene, anthracene,
fluoranthene, fluorene, and pyrene. Specifically, information about concentrations of these PAHSs in
various environmental media and exposure assessment approaches used by FDEP and USEPA were
reviewed and updated as appropriate. Based on the physical properties and available exposure
information for acenaphthene, anthracene, fluoranthene, fluorene, and pyrene; air, diet, soil, and drinking
water are potential exposure sources. To the contrary of USEPA'’s conclusions and consistent with the
information developed by FDEP in 2014, sufficient data are available to develop conservative estimates of
non-surface water exposure to these non-carcinogenic PAHs and to develop a robust, scientifically
defensible and conservative RSCs.

Ambient air exposures were estimated in FDEP (2014) using concentration data obtained from a Florida —
specific study (Poor et al. 2004). For this assessment, available ambient air data collected by the IDEQ
were obtained for acenaphthene, anthracene, fluoranthene, and pyrene from the USEPA Ambient
Monitoring Archive! (AMA). Idaho-specific ambient air data for fluorene was not reported in the AMA. The
following table summarizes the AMA data for individual PAH ambient air concentrations collected from
December 2002 through March 2005 for Site ID 160270004 located in Nampa, the second largest city in
Idaho, and centrally located in the Treasure Valley2. These data are reported as the total of both gas-
phase and particle-phase ambient air concentrations for individual PAHs, as PAHSs occur in the
atmosphere in both the vapor phase and the particle phase.

1 http://www.epa.gov/ttnamtil/toxdat.html#data

2 According to the IDEQ (IDEQ 2009), Nampa has a diverse source profile including Title V (major point sources) and minor sources,
light industry, and sprawling residential areas feeding heavy commuter traffic. As such, these concentrations likely overestimate the
concentrations of these PAHs in many areas of Idaho and can, therefore, be considered conservative estimates of the air
concentrations of these PAHs for Idaho.
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DERIVATION OF ALTERNATE RELATIVE SOURCE CONTRIBUTION FACTORS

Minimum Total Gas Maximum Total Gas Mean Total Gas and

and Particle Phase and Particle Phase Particle Phase
Result Result Result
(ng/m3) (ng/m?) (ng/m3)
Acenaphthene <0.05 4.48 0.68
Anthracene <0.05 4.65 0.85
Fluoranthene 0.05 5.97 1.52
Pyrene 0.05 5.29 1.42

Note: Data obtained from USEPA Ambient Monitoring Archive.

Mean outdoor air values were combined with a revised upper percentile outdoor breathing rate of 3.6
m?/day and an updated body weight of 80 kg to derive ambient air exposures to acenaphthene,
anthracene, fluoranthene, and pyrene. FDEP uses an assumed bodyweight of 70 kg, whereas Arcadis
assumes a bodyweight of 80 kg per USEPA (2011a) and consistent with the bodyweight assumed by
USEPA recently updated HHAWQC (USEPA 2015). For the outdoor breathing rate, FDEP (2014)
assumes a value of 3.12 m3/day derived from a mean breathing rate of 16 m3/day obtained from USEPA
(2011a) and an adjustment to account for time spent outdoors (20%) versus indoors (80%) per Table 16-
22a of USEPA (2011a). Arcadis uses this same 20% adjustment to determine an outdoor breathing rate of
3.6 m3/day; however, Arcadis applies this adjustment to the 90" percentile breathing rate of 18 m3/day
(Table 6-4 USEPA 2011a; mean of 90 percentile male and female values) instead of the mean breathing
rate. Ambient air exposures for fluorene are consistent with methods presented in FDEP (2014) with the
exception of the assumed bodyweight of 80 kg and the revised upper percentile breathing rate of 3.6
m3/day.

Methods used in this assessment to determine indoor air exposures to individual PAHs are consistent with
methods presented in FDEP (2014) with the exception of the assumed bodyweight (80 kg was used in this
assessment versus 70 kg) and the use of a revised upper percentile indoor breathing rate. Specifically,
mean indoor air PAH concentrations identified in FDEP (2014) were combined with an indoor breathing
rate of 14.4 m3/day and a body weight of 80 kg. FDEP assumes indoor breathing rate of 12.88 m3/day
derived from a mean breathing rate of 16 m3/day (USEPA 2011a) and an adjustment to account for time
spent indoors (80% per Table 16-22a of USEPA 2011a), while Arcadis applies the 80% indoor adjustment
to the 90t percentile breathing rate of 18 m3/day (Table 6-4 USEPA 2011a; mean of 90t percentile male
and female values).

Exposure from diet was estimated using methods consistent with methods presented in FDEP (2014). As
summarized in FDEP (2014), acenaphthene and fluorene exposures were estimated from Santodonato et
al. (1981) and are conservatively based on the total PAH concentrations reported in that study. Dietary
exposures for anthracene, fluoranthene, and pyrene were obtained from an occurrence study prepared by
the European Commission (EC 2002).

Soil ingestion exposures for individual non-carcinogenic PAHs were presented in FDEP (2014). For
anthracene, fluoranthene, fluorene, and pyrene, FDEP (2014) relies on PAH concentrations presented in
Chahal et al. (2010), a Florida-specific study on urban residential soil in Pinellas County, Florida. For
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acenaphthene, the FDEP (2014) soil exposures are based on data presented in Wang et al. (2008). The
Wang study reported PAHs from two major United States cities, New Orleans and Detroit, and the
sampling sites included house foundations, open spaces, and soils bordering residential (light to moderate
traffic) and busy (heavy traffic) streets. For this assessment, one additional background PAH study
(Bradley et al. 1994) was reviewed. The Bradley study focuses on background PAH surface soil
concentrations in three urban areas of New England: Boston, Massachusetts; Springfield, Massachusetts;
and Providence, Rhode Island. A summary of mean soil concentrations reported in these three studies is
provided below.

Mean Background Soil Data (ug/kg)

Chahal et al. (2010) | Wang et al. (2008) | Bradley et al. (1994)

Acenaphthene Not Evaluated 16.5 201
Anthracene 110 679 351
Fluoranthene 133 12.8 3,047
Fluorene 33 46.6 214
Pyrene 297 573 2,393

Note: Maximum values for each non-carcinogenic PAH are bolded

The maximum of the three available mean background concentrations (in bold above) were combined with
a soil ingestion rates of 50 mg/day and a bodyweight of 80 kg (USEPA 2011a) to derive soil exposure
estimates for acenaphthene, anthracene, fluoranthene, fluorene, and pyrene. The soil exposure estimates
are conservative, as data available from Bradley et al. (1994) and Wang et al. (2008) were collected from
highly urbanized locations with historic development and have many more sources that expected in most
of Idaho. Additionally, data from Bradley et al (1994) represent PAH concentrations from sources present
25 years ago. Present day soils would be expected to be much lower based on emission controls on
mobile sources such as cars, trucks, and buses.

Treated drinking water exposures to non-carcinogenic PAHs were presented in FDEP (2014). FDEP relies
on concentration data published in Kabzinski et al. (2002), which reports individual PAH concentrations in
drinking water from several Polish cities. Arcadis researched available drinking water data within the
United States, including the National Drinking Water Database created by the Environmental Working
Group (EWG). EWG requested water data from public and environmental health agencies from around
the country and has compiled nearly 20 million records from 45 states. According to EWG’s analysis of
water quality data supplied by state water agencies, no water utilities in Idaho reported detecting these
five non-carcinogenic PAHSs in treated tap water between 2005 and 2009. However, EWG does list the
highest of the average reported concentrations in United States drinking water for acenaphthene (3.7
ug/L), anthracene (0.1 ug/L), fluoranthene (1.1 ug/L), fluorene (9.1 ug/L), and pyrene (0.4 ug/L). In this
assessment, these average reported United States drinking water concentrations were combined with an
assumed bodyweight and a drinking water ingestion rate of 2.4 L/day to derive drinking water exposures.

When the changes described above (i.e., updated drinking water, soil, ambient air concentrations;
updated drinking water ingestion rate; updated indoor and outdoor inhalation rates; and updated body
weight for drinking water, inhalation, and soil exposures) are incorporated into the exposure estimates, the
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RSCs for acenaphthene, anthracene, fluoranthene, fluorene, and pyrene are 0.99, 1, 1, 0.99, and 1,
respectively3. The environmental media concentration data reviewed to develop the above estimated
exposures from non-surface water exposures overestimate, likely greatly in most cases, PAH
concentrations in Idaho. When these estimated concentrations are combined with high-end assumptions
about intake rates, background exposures are overestimated. As a result, the estimated RSCs are smaller
(more conservative) than necessary to prevent the total exposure of Idahoans with high-end exposures
from exceeding the reference dose for each of these PAHSs. Arcadis recommends that final HHAWQC for
these five PAHSs incorporate the RSCs derived in this report.

Acenaphthene | Anthracene Fluoranthene Fluorene | Pyrene

Exposure Route

mg/kg-day
Inhalation of Outdoor Air 3.06E-08 3.81E-08 6.82E-08 2.89E-07 | 6.41E-08
Inhalation of Indoor Air 6.84E-07 1.75E-06 3.96E-07 8.28E-07 | 2.16E-07
Diet 2.90E-04 9.00E-06 2.40E-05 2.90E-04 | 1.6E-05
Soil Ingestion 1.26E-07 4.24E-07 1.90E-06 1.34E-07 | 1.50E-06
Treated Drinking Water 1.11E-04 3.00E-06 3.30E-05 2.73E-04 | 1.20E-05
SRR ey 4.02E-04 142E-05 | 6.02E-05 | 5.64E-04 | 3.07E-05
Reference Dose 0.06 0.3 0.04 0.04 0.03
Relative Source
Contribution O L L B L

3 2-CHLOROPHENOL

The recent 2015 USEPA HHAWQC (USEPA 2015) selects an RSC of 0.2 for 2-chlorophenol and
indicates that information is not available to quantitatively characterize exposure from potential significant
exposures. According to the USEPA (2000), relevant sources and pathways for consideration in the RSC
include both ingestion and routes other than oral for water-related exposures and non-water sources of
exposure, including ingestion exposures (e.g., food), inhalation, and/or dermal. In 2014, the FDEP
conducted an extensive review of the information available on exposure to 2-chlorophenol. As a result of
that review, FDEP derived an RSC of 0.89 for 2-chlorophenol (FDEP 2014). Ultimately, FDEP selected a
final RSC of 0.8 for 2-chlorophenol for reasons described below.

“...the estimated exposure was calculated based on limited data or surrogate
estimates (i.e., drinking water); therefore, it only serves as one line of evidence
supporting an RSC. FDEP also considered the fact that 2-chlorophenol, like most
chlorophenols, exhibits objectionable taste and odor at very low concentrations.
The ATSDR (1999) noted that potential exposure, for the general population, to
chlorophenols tends to be limited because of the pronounced odor and taste
imparted by the presence of these substances. Taste and odor thresholds for 2-
chlorophenol have been noted in the range of 2 to 4 parts per billion (ppb) and
have been noted to affect the flavor of fish at concentrations of about 2 to 43

3RSCs of 1.0 arise when the fraction of the RfD taken up by non-surface water sources is less than 0.005 and, therefore, the RSC
rounds to 1, meaning that essentially all of the RfD can be allotted to exposures associated with regulated surface water exposures.
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times lower than the odor thresholds for these compounds in water. Thus, it is
highly unlikely that the general population is exposed to significant levels of the
compound. An RSC of 0.8 (USEPA ceiling) was selected based on a
consideration of both the characteristics of the compound (i.e., objectionable
taste and odor) and the estimated low total non-ambient exposure.”

Arcadis reviewed information relevant to the derivation of an RSC for 2-chlorophenol. Specifically,
information about concentrations of 2-chlorophenol in various environmental media and exposure
assessment approaches used by FDEP and USEPA were reviewed and updated as appropriate. Based
on the physical properties and available exposure information for 2-chlorophenol, drinking water, air, and
diet are potential exposure sources. To the contrary of USEPA'’s conclusions and consistent with the
information developed by FDEP in 2014, sufficient data are available to develop conservative estimates of
non-surface water exposure to 2-chlorophenol and to develop a robust, scientifically defensible and
conservative RSC for 2-chlorophenol.

Treated drinking water exposures were calculated consistent with methods presented in FDEP (2014) with
the exception of the assumed bodyweight and the drinking water ingestion rate (80 kg was used as the
bodyweight in this assessment versus 70 kg used by FDEP; 2.4 L/day was used as the ingestion rate in
this assessment versus 2 L/day). As summarized in FDEP (2014), a value of 0.1 ug/L was selected as a
2-chlorophenol drinking water concentration because this is the concentration that USEPA recommends
to mitigate chemical-specific taste (ATSDR 1999).

Ambient air inhalation exposures were calculated consistent with methods presented in FDEP (2014) with
the exception of the assumed bodyweight. FDEP uses an assumed bodyweight of 70 kg, whereas Arcadis
assumes a bodyweight of 80 kg per USEPA (2011a). An assumed air concentration of 2 ug/m? was
combined with a 90t percentile daily breathing rate of 18 m3/day (average of men and women) and a
mean body weight of 80 kg. The assumed air concentration is based on available ambient air data
collected after the accidental derailment and rupture of a train tanker. On the day of the accident, air
concentrations ranging from 0.02 to 0.7 mg/m?2 were detected in the immediate vicinity of the spill (Scow et
al. 1982). Eighteen days after the spill, 2-chlorophenol was not detected in ambient air (< 2 pg/m?) and 2-
chlorophenol levels in urine of clean-up workers and people living within 40 to 200 feet of the spill had no
detectable levels in their urine two to three months after the spill. Similar to FDEP, this assessment
assumes that concentrations below the detection limit of 2 pg/ms? represent typical ambient air conditions.
Using the full detection limit in the exposure calculations is conservative since actual concentrations of 2-
chlorophenol in air are likely lower than the detection limit.

Data concerning typical concentrations of 2-chlorophenol in soils are limited; however, soil exposures to 2-
chlorophenol were presented in FDEP (2014). The same methodology was used in this assessment, with
the exception of the assumed bodyweight used in the exposure calculations and the assumed soll
concentration (80 kg was used in this assessment versus 70 kg used by FDEP). FDEP assumes a soll
concentration of 130 mg/kg based on the FDEP residential direct exposure soil clean-up target level of
130 mg/kg (FDEP 2005). In this assessment, the Idaho Initial Default Target Level of 0.365 mg/kg (based
on groundwater protection) developed by the Idaho IDEQ (2004) was combined with a soil ingestion rate
of 50 mg/day and a bodyweight of 80 kg (USEPA 2011a) to derive soil exposure estimates for 2-
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chlorophenol. The IDTL represents a level above which the state of Idaho would initiate clean-up
protocols.

Based on a review of literature data, FDEP (2014) concludes that exposures to 2-chlorophenol in diet is
negligible. Few data were found on the levels of chlorophenols in United States Foods and most of the
data or estimates are for concentrations in fish or shellfish. Based on Arcadis’ additional review of the
DeVault (1985) study in which 2-chlorophenol was not detected in 22 composite samples of fish collected
from harbors and tributaries of the Great Lakes (DeVault 1985), Arcadis concurs with FDEPs assessment
of dietary exposures.

When the changes described above (updated drinking water ingestion rate; updated inhalation rate;
updated bodyweight for water, air, and soil exposures; and an updated soil concentration for soil
exposures) are incorporated into the exposure estimates, the RSC for 2-chlorophenol becomes 0.91. The
RSC is slightly higher than the RSC of 0.89 derived by FDEP (2014) because of the change in assumed
soil concentration. The RSC is also higher than the final RSC of 0.8 selected by FDEP, as FDEP further
reduced the derived value of 0.89 to account for limited data on background exposures to 2-chlorophenol.
The environmental media concentration data reviewed to develop the above estimated exposures from
non-surface water exposures overestimate, likely greatly in most cases, 2-chlorophenol concentrations in
Idaho. When these estimated concentrations are combined with high-end assumptions about intake rates,
background exposures are overestimated. As a result, the estimated RSC is smaller (more conservative)
than necessary to prevent the total exposure of Idahoans with high-end exposures from exceeding the
reference dose for 2-chlorophenol. Arcadis recommends that final HHAWQC for 2-chlorophenol
incorporate the RSC derived in this report.

Exposure Route Arcadis Estimated Exposure

mg/kg-day
Treated Drinking Water 3.00E-06
Inhalation of Air 4.50E-04
Soil Ingestion 2.28E-07
Estimated Total Daily Dose 4.53E-04
Reference Dose 0.005
Relative Source Contribution 0.91

4  SELENIUM

The recent 2015 USEPA HHAWQC (USEPA 2015) did not apply an RSC for ambient water quality criteria
development and cited “outstanding technical issues related to toxicity values and/or bioaccumulation
factors”. However, the proposed Idaho HHAWQC selected an RSC of 0.2 for selenium and indicates that
information is not available to quantitatively characterize exposure from potential significant exposures. In
2014, the FDEP conducted an extensive review of the information available on exposure to selenium. As
a result of that review, FDEP derived an RSC value of 0.58 for selenium (FDEP 2014).

Arcadis reviewed information relevant to the derivation of an RSC for selenium. Specifically, information
about concentrations of selenium in various environmental media and exposure assessment approaches
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used by FDEP and USEPA were reviewed and updated as appropriate. Based on the physical properties
and available exposure information for selenium, air, drinking water, soil, and diet are potential exposure
sources. To the contrary of USEPA’s conclusions and consistent with the information developed by FDEP
in 2014, sufficient data are available to develop conservative estimates of non-surface water exposure to
selenium and to develop a robust, scientifically defensible and conservative RSC for selenium.

Treated drinking water exposures were calculated consistent with methods presented in FDEP (2014) with
the exception of the assumed bodyweight and the drinking water ingestion rate (80 kg was used as the
bodyweight in this assessment versus 70 kg used by FDEP; 2.4 L/day was used as the ingestion rate in
this assessment versus 2 L/day). As summarized in FDEP (2014), a value of 10 ug/L was selected as a
selenium drinking water concentration based on ATSDR (2003), which reported that levels of selenium
are less than 10 pg/L/ in 99.5 percent of drinking water sources tested. A recent review of Idaho-specific
data between 2004 and 2009 correlates well with the FDEP selected exposure data, as the highest
reported average level of selenium in Idaho tap water was 8 ug/L (http://www.ewg.org/tap-
water/whatsinyourwater/1045/I1D/Idaho/Selenium-total/).

Outdoor air inhalation exposures were calculated consistent with methods presented in FDEP (2014) with
the exception of the assumed bodyweight and inhalation rate. FDEP uses an assumed bodyweight of 70
kg, whereas Arcadis assumes a bodyweight of 80 kg per USEPA (2011a). An upper-bound outdoor air
breathing rate of 3.6 m3/d was calculated based on the 90t percentile daily breathing rate of 18 m3/d for
the average of male and female adults (Table 6-4 from USEPA 2011a) and an assumption that 20% of
time is spent outdoors (Table 16-22 of USEPA 2011a). An upper-bound outdoor air selenium
concentration of 10 ng/m3 (World Health Organization 2011) was combined with the outdoor air breathing
rate of 3.6 m3/day and a body weight of 80 kg. As part of this assessment, available ambient air data
collected by the IDEQ were obtained for selenium from the USEPA AMA
(http://www.epa.gov/tthnamtil/toxdat.html#data). A review of the 2013 AMA data indicates maximum
detected concentrations of selenium PM 2.5 at three Idaho ambient air sampling sites of 1.5 ng/m?, 0.56
ng/m3, and 0.43 ng/m3. As such, the FDEP ambient air exposures are conservative estimates of ldaho-
specific exposures.

In this assessment, diet exposures differ from those by FDEP (2014) in that the assumed bodyweight was
updated and selenium intake values were revised. FDEP uses an assumed bodyweight of 70 kg, whereas
Arcadis assumes a bodyweight of 80 kg per USEPA (2011). In FDEP (2014), dietary exposure estimates
were derived from dietary intake data presented in Bialostosky et al. (2002), which reports a mean
selenium intake of 114 ug/day for the total population sampled. This is consistent with dietary intake
estimates summarized in ATSDR (2003), which range from 71 to 152 ug/day for the general United States
Population. This is also consistent with the more recent NHANES 2011-2012 study that reports a mean
selenium intake from food and supplements of 129.7 ug/day for all individuals ages 2 and over (Table 37
of NHANES 2011-2012).

Soil ingestion exposures for selenium were presented in FDEP (2014) and were based on a Florida-
specific study (ATSDR (2003). For this assessment, an Idaho-specific soil background study completed
for the Ballard, Henry and Enoch Valley phosphate mines was reviewed (MWH Americas, Inc. 2013) and
proposed an upland soil background selenium concentration of 1.8 mg/kg. This is consistent with the

arcadis.com
Appendix A RSC_4Nov2015.docx


http://www.ewg.org/tap-water/whatsinyourwater/1045/ID/Idaho/Selenium-total/
http://www.ewg.org/tap-water/whatsinyourwater/1045/ID/Idaho/Selenium-total/
http://www.epa.gov/ttnamti1/toxdat.html%23data

DERIVATION OF ALTERNATE RELATIVE SOURCE CONTRIBUTION FACTORS

range of selenium concentrations reported in Western United States soils by Shacklette and Boerngen,
(1984) (<0.1 — 4.3 mg/kg). A concentration of 1.8 mg/kg was combined with a soil ingestion rate of 50
mg/day and a bodyweight of 80 kg (USEPA 2011a) to derive soil exposure estimates for selenium.

When the changes described above (i.e., updated drinking water ingestion rate; updated body weight for
drinking water, inhalation, diet, and soil exposures; and updated soil concentrations) are incorporated into
the exposure estimates, the RSC for selenium becomes 0.65. The RSC is higher than that the RSC
developed by FDEP (2014) primarily because of an increase in assumed bodyweight and a calculation
error by FDEP in their estimate of soil ingestion exposure. The Arcadis derived RSC combines upper
bound exposure parameters with scientifically defensible and conservative exposure concentrations.
Arcadis recommends that final HHAWQC for selenium incorporate the RSC derived in this report.

Exposure Route Arcadis Estimated Exposure

mg/kg-day

Treated Drinking Water 3.00E-04
Inhalation of Outdoor Air 4 50E-07
Diet 1.43E-03
Soil Ingestion 1.13E-06
Estimated Total Daily Dose 1.73E-03
Reference Dose 5.0E-03
Relative Source Contribution 0.65

5 DIETHYL PHTHALATE

The recent 2015 USEPA Update of HHAWQC (USEPA 2015) selected an RSC of 0.2 for diethyl phthalate
and indicates that information is not available to quantitatively characterize exposure from some of those
different sources. In 2014, the FDEP conducted an extensive review of the information available on
exposure to diethyl phthalate. As a result of that review, FDEP derived an RSC of 0.96 for diethyl
phthalate (FDEP 2014).

Arcadis reviewed information relevant to the derivation of an RSC for diethyl phthalate. Specifically,
information about concentrations of diethyl phthalate in various environmental media and exposure
assessment approaches used by FDEP and USEPA were reviewed and updated as appropriate. Based
on the physical properties and available exposure information for diethyl phthalate, drinking water, air, soil,
dust, cosmetics/personal care products, and food are potential exposure sources. To the contrary of
USEPA'’s conclusions and consistent with the information developed by FDEP in 2014, sufficient data are
available to develop conservative estimates of non-surface water exposure to diethyl phthalate and to
develop a robust, scientifically defensible and conservative RSC for diethyl phthalate.

Treated drinking water exposures to diethyl phthalate were presented in FDEP (2014). The same
methodology was used in this assessment, with the exception of the assumed bodyweight and drinking
water ingestion rates used in the exposure calculations, which were updated to be consistent with USEPA
(2011a) exposure assumptions (80 kg was used as the bodyweight in this assessment versus 70 kg used
by FDEP; 2.4 L/day was used as the ingestion rate in this assessment versus 2 L/day). FDEP assumes a
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diethyl phthalate concentration of 2 ug/L in treated water based on the average concentration in treated
drinking water reported in a United States Geological Survey (USGS) study conducted in Miami-Dade
County Florida (USGS 2008). This assumption is consistent with other available national studies (IPCS
2003, ATSDR 1995, Clark et al. 2011) and was retained for this assessment. In addition, a review of 2012
discharge sampling results from the Brownlee Reservoir in Idaho indicates non-detect levels (< 10 ug/L) of
diethyl phthalate (Harrison 2012).

Outdoor and indoor air inhalation diethyl phthalate exposures were calculated consistent with methods
presented in FDEP (2014) with the exception of the assumed bodyweight and breathing rate. FDEP uses
an assumed bodyweight of 70 kg, whereas Arcadis assumes a bodyweight of 80 kg per USEPA (2011a).
FDEP assumes outdoor and indoor breathing rates of 3.12 m8/day and 12.88 m3/day, respectively,
derived from a mean breathing rate of 16 m3/day obtained from USEPA 2011a and an adjustment to
account for time spent outdoors (20%) versus indoors (80%) per Table 16-22a of USEPA 2011a. Arcadis
uses this same 20%/80% adjustment to determine outdoor versus indoor exposures; however, Arcadis
applies these adjustments to the 90" percentile breathing rate of 18 m3/day (Table 6-4 USEPA 2011a;
mean of 90t percentile male and female values) instead of the mean breathing rate, resulting in outdoor
and indoor breathing rates of 3.6 m3/day and 14.4 m3/day, respectively. For the purpose of RSC
calculation, a mean outdoor air concentration of 0.47 ug/m? and a mean indoor air concentration of 1.81
Mg/me were selected as exposure concentrations based on a volatile organic compounds study conducted
by Shields and Weschler (1987) in New Jersey. These exposure concentrations are conservative, as
exposure estimates from several intake and primary metabolite studies compiled in Clark et al. (2011)
indicate lower mean outdoor air concentration of 0.013 pug/m?3 and a lower mean indoor air concentration
of 0.91 pg/mé3.

Soil and dust ingestion exposures to diethyl phthalate were presented by FDEP (2014). The same
methodology was used in this assessment, with the exception of the assumed bodyweight used in the
exposure calculations (80 kg was used in this assessment versus 70 kg used by FDEP (2014) and the soll
ingestion rate used for soil exposures (50 mg/day was used in this assessment versus 20 mg/day used by
FDEP). Mean soil and dust concentrations of 0.0023 ug/g and 25 ug/g were combined with soil and dust
ingestion rates of 50 mg/day and 30 mg/day, respectively, to derive exposure estimates. The mean soil
and dust concentrations are based on values reported in Clark et al. (2011). These concentrations were
selected because they represent the highest estimates concerning diethyl phthalate soil/dust exposures
available for the United States.

As summarized in FDEP (2014), Schecter et al. (2013) conducted an analysis of 72 different foods
collected from the Albany, New York area to determine phthalate concentrations in different food groups.
Arcadis re-grouped and modified the values presented in Schecter et al. (2013) using upper percentile
consumption rates available from USEPA (2008, 2011) for most food types. The dietary exposures include
exposure to beverages, dairy, fish, fruits, vegetables, meats, condiments, and infant foods. Arcadis
assumed an Idaho-specific marine fish consumption rate of 42.68 g/day based on the 90t percentile value
of market fish as presented in Buckman et al. (2015). This is conservative as it assumes that all market
fish are marine fish.
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Given the presence of diethyl phthalate in cosmetics and personal care products, FDEP (2014) reviewed
available data from this exposure source. As presented in FDEP (2014), Koo and Lee (2004) conducted
an investigation that analyzed phthalate concentrations in a variety of different commonly used cosmetic
products including 42 perfumes, 21 nail polishes, 31 hair products, and 8 deodorants. Koo and Lee (2004)
estimated a total exposure to diethyl phthalate from the use of consumer care products of 24.879 ug/kg-
day, based on both dermal and inhalation exposure routes. FDEP (2014) used this value in the
computation of total estimated non-ambient exposure to diethyl phthalate. The same value was also used
in this assessment.

When the changes described above (updated drinking water ingestion rate; updated bodyweight for water,
air, soil and dust exposures; and updated soil and dust ingestion rates for soil exposures, revised dietary
consumption rates based on upper percentiles and an Idaho specific fish consumption rate) are
incorporated into the exposure estimates, the RSC for diethyl phthalate becomes 0.97. The RSC is slightly
higher than the RSC derived by FDEP (2014) because of the change in assumed bodyweight.

Exposure Route Arcadis Estimated Exposure

mg/kg-day

Treated Drinking Water 6.00E-05
Inhalation of Indoor Air 3.26E-04
Inhalation of Outdoor Air 2.12E-05
Soil Ingestion 1.44E-09
Dust Ingestion 9.38E-06
Diet 1.46E-04
Personal Care Products 2.49E-02
Estimated Total Daily Dose 2.54E-02
Reference Dose 0.8

Relative Source Contribution 0.97

It should be noted that phthalates are widely used in laboratory equipment, which can result in higher
estimated concentrations in analyzed samples (Guo and Kannan 2012). The dietary exposure estimates
above assume 100% bioavailability, which is likely to overestimate intakes as well. For these reasons, the
estimated exposures may be biased high and contribute to the derivation of a more conservative RSC.
The RSC is further supported by total exposure estimates based on extrapolations from urinary
metabolites. Blount et al. (2000) estimates the geometric mean and the 95" percentile of total daily
exposures for the general population (based on 289 individuals) to be 1.2E-02 mg/kg-day and 1.1E-01
mg/kg-day, respectively. When Blount et al (2000) exposure estimates are compared with the diethyl
phthalate Reference Dose (0.8 mg/kg-day), RSC estimates range from 0.86 (95" percentile of exposure)
to 0.99 (geometric mean exposure). The Chronic Hazard Advisory Panel (CHAP 2014) reports more
recent exposure data from the 2005-2006 NHANES study in United States women of childbearing age
(considered to be a more highly exposed subgroup). Total daily FDEP intakes of 3.3 ug/kg bw-d (median)
and 37.6 ug/kg bw-d (95 percentile) were back-calculated from measured urinary metabolites (CHAP
2014), which correspond to RSC values of 0.99 and 0.95, respectively. Additionally, exposure to diethyl
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phthalate is decreasing; urinary metabolite concentrations have decreased monotonically in the general
population since 2005-2006, and were 42% lower in 2009-2010 than in 2001 (Zota et al. 2014).

Therefore, although the RSC calculated herein exceeds the ceiling value of 0.8 (USEPA 2015), diethyl
phthalate exposure from non-ambient sources (diet and consumer product) contributes a small fraction of
the RfD and exposure from these sources is likely to decline given recent trends diethyl phthalate use, the
0.97 RSC is considered conservative and appropriate for use in water quality criteria derivation. Arcadis
recommends that final HHAWQC for diethyl phthalate incorporate the RSC derived in this report.

6 CHLOROFORM

The recent 2015 USEPA Update of HHAWQC (USEPA 2015) selected an RSC of 0.2 for chloroform and
indicates that information is not available to quantitatively characterize exposure from some of those
different sources. Specifically, USEPA notes that exposures from inland, nearshore, and ocean fish and
shellfish could not be quantified due to the lack of data. However, as described below, information to
quantitatively characterize exposure from these difference sources, including fish, is available. In 2014,
the FDEP conducted an extensive review of the information available on exposure to chloroform. As a
result of that review, FDEP derived an RSC of 0.76 for chloroform (FDEP 2014).

Arcadis reviewed information relevant to the derivation of an RSC for chloroform. Specifically, information
about concentrations of chloroform in various environmental media and exposure assessment approaches
used by FDEP and USEPA were reviewed and updated as appropriate. Based on the physical properties
and available exposure information for chloroform, air, drinking water, and food are potentially significant
sources. To the contrary of USEPA'’s conclusions and consistent with the information developed by FDEP
in 2014, sufficient data are available to develop conservative estimates of non-surface water exposure to
chloroform and to develop a robust, scientifically defensible and conservative RSC for chloroform.

Outdoor and indoor air inhalation chloroform exposures were calculated consistent with methods
presented in FDEP (2014) with the exception of the assumed bodyweight, the outdoor and indoor
breathing rates, and the inhalation fraction term. FDEP uses an assumed bodyweight of 70 kg, whereas
Arcadis assumes a bodyweight of 80 kg per USEPA (2011a) and consistent with the bodyweight assumed
by USEPA recently updated HHAWQC (USEPA 2015). FDEP assumes outdoor and indoor breathing
rates of 3.12 m3¥/day and 12.88 m3/day, respectively, derived from a mean breathing rate of 16 m3/day
obtained from USEPA 2011a and an adjustment to account for time spent outdoors (20%) versus indoors
(80%) per Table 16-22a of USEPA 2011a. Arcadis uses this same 20%/80% adjustment to determine
outdoor versus indoor exposures; however, Arcadis applies these adjustments to the 90t percentile
breathing rate of 18 m3/day (Table 6-4 USEPA 2011a; mean of 90" percentile male and female values)
instead of the mean breathing rate, resulting in outdoor and indoor breathing rates of 3.6 m3/day and 14.4
m?3/day, respectively. The inhalation exposure estimates in this assessment do not include the inhalation
fraction term of 0.63 used by FDEP (2014), as the basis of this term was not clear. The mean outdoor air
chloroform concentration for locations in the United States presented in USEPA 2001 (1.6 ug/m?) was
combined with a breathing rate of 3.6 m3/day and a body weight of 80 kg. The mean indoor air chloroform
concentration in USEPA (2001) (3 ug/m?) was combined with a breathing rate of 14.4 m3/day and a body
weight of 80 kg. As part of this assessment, available ambient air data collected in Idaho were obtained
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for chloroform from the USEPA AMA (http://www.epa.gov/tthamtil/toxdat.html#data). A review of the
ambient air sampling data collected routinely from five sampling sites*in Idaho between May 2006 and
April 2007 indicates average detected concentrations of chloroform ranging from 0.02 ug/m? to 0.065
ug/m3, while more recent AMA data collected at two sampling sites® in Idaho in 2009 and 2011 indicate a
maximum detected concentration of chloroform of 0.024 ug/m3. As such, the FDEP outdoor ambient air
exposures are conservative estimates of Idaho-specific exposures.

Inhalation and dermal exposures to chloroform while showering and exposure to treated drinking water
were derived in USEPA (2003) and in FDEP (2014). The same methodology was used in this
assessment, with the exception of the assumed bodyweight, the use of an upper percentile value instead
of a mean value for the shower breathing rate, and revised values for surface area and shower durations
per USEPA (2011a). Specifically, Arcadis used a bodyweight of 80 kg versus 70 kg, an upper bound
shower breathing rate of 0.75 m3hour versus the FDEP value of 0.67 m3/hour, a whole body surface area
20,900 cm? obtained from USEPA (2011a) versus the value of 20,300 cm3used by FDEP from an
undisclosed source, and an average shower duration time of 17 minutes based on USEPA (2011a, Table
16.1) versus a duration of 7.3 minutes used by FDEP from an undisclosed source. These conservative
exposure parameters were combined with the USEPA (2001) recommended mean concentration of
chloroform in air during showering (190 ug/m3) and mean concentration of chloroform in treated water (24
ug/L) to determine inhalation and dermal exposures.

Exposure from diet was estimated in USEPA (2003) and was recently updated by the FDEP (2014) to
account for more recent average per capita food ingestion rate data available in USEPA (2011a). In this
assessment, Arcadis calculates diet exposures by combining the estimated concentrations in dietary items
from USEPA (2003) with upper percentile per capita food consumption rates available from USEPA
(2011a) rather than the average consumption rates used by FDEP (2014). The dietary exposures include
exposure to fruits, vegetables, meats, grain, dairy, and marine fish. Arcadis assumed an Idaho-specific
marine fish consumption rate of 42.68 g/day based on the 90™ percentile value of market fish as
presented in Buckman et al. 2015. This fish consumption rate is conservative as it assumes that all market
fish are marine fish.

Given USEPA's statement that information is not available to estimate exposures to fish and shellfish
(USEPA 2015), Arcadis reviewed fish data available from studies in Florida (Staples et al. 1985) and
additional fish data (not reviewed in FDEP (2014)) from Texas (http://fishadvisoryonline.epa.gov/). Median
biota concentrations in Staples et al (1985) are reported as 0.032 mg/kg, while no concentrations of
chloroform (in 199 samples) were detected above the reporting limits (0.04 and 0.02 mg/kg) in available
fish tissue data from Texas. These results are lower than the concentration of 0.052 mg/kg assumed by
FDEP to be in marine fish when developing the RSC of 0.76 for chloroform. Additionally, the national-level

4 Station 160690006 in Nez Perce County (n=113), 160690009 in Nez Perce County (n=54), 160690012 in Nez Perce County
(n=51), 160690013 in Nez Perce County (n=57), and 160690222 in Nez Perce County (n=58).

5 Station 160695501 via School Air Toxics Program (n=13; collected from September 2009 to December 2009), 160695502 via
School Air Toxics Program (n=10; collected from June 2011 to August 2011).
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bioaccumulation factor (BAF) estimates for chloroform range from 2.8 L/kg (T2) to 3.8 L/kg (TL4), which
indicate that chloroform has a low potential for bioaccumulation (USEPA 2011b) supporting the low and
non-detectable concentrations described above and the concentrations used by FDEP (2014) when
deriving their RSC.

Based on the information summarize above, the exposures estimated by FDEP (2014) for all exposures
were updated to account for USEPA's increase of the default body weight from 70 to 80 kilograms and to
account for upper percentile exposure parameter values, including an Idaho-specific fish consumption
rate. In addition, the inhalation fraction terms was not considered for inhalation exposure estimates. When
those changes are made the RSC for chloroform becomes 0.64. The Arcadis derived RSC combines
upper bound exposure parameters with scientifically defensible and conservative exposure concentrations
that likely overestimate exposures in Idaho. Arcadis recommends that final HHAWQC for chloroform
incorporate the RSC derived in this report.

Exposure Route Arcadis Estimated Exposure

mg/kg-day

Inhalation of Indoor Air 5.40E-04
Inhalation of Outdoor Air 7.20E-05
Inhalation while showering 4,99E-04
Dermal during showering 3.75E-04
Treated drinking water ingestion 7.20E-04
Diet 1.40E-03
Estimated Total Daily Dose 3.61E-03
Reference Dose 0.01

Relative Source Contribution 0.64

7 BUTYLBENZYL PHTHALATE (BBP)

The recent 2015 USEPA Update of HHAWQC (USEPA 2015) selected an RSC of 0.2 for BBP and
indicates that information is not available to quantitatively characterize exposure from potentially
significant sources. In 2014, the FDEP conducted an extensive review of the information available on
exposure to BBP. As a result of that review, FDEP derived an RSC of 0.95 for BBP (FDEP 2014).

Arcadis reviewed information relevant to the derivation of an RSC for BBP. Specifically, information about
concentrations of BBP in various environmental media and exposure assessment approaches used by
FDEP and USEPA were reviewed and updated as appropriate. Based on the physical properties and
available exposure information for BBP, fish and shellfish, non-fish food, inhalation, and consumer
products are potential sources. Contrary of USEPA’s conclusions and consistent with the information
developed by FDEP in 2014, sufficient data are available to develop conservative estimates of non-
surface water exposure to BBP and to develop a robust, scientifically defensible and conservative RSC for
BBP.
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Based on available data, FDEP (2014) concludes that exposures to drinking water and soils are
negligible. Arcadis concurs with FDEPs assessment of these exposures.

Ambient air inhalation BBP exposures were calculated consistent with methods presented in FDEP (2014)
with the exception of the assumed bodyweight and inhalation rate. FDEP uses an assumed bodyweight of
70 kg, whereas Arcadis assumes a bodyweight of 80 kg per USEPA (2011a) and consistent with the
bodyweight assumed by USEPA recently updated HHAWQC (USEPA 2015). A 90t percentile daily
breathing rate of 18 m3/day was selected based on the average for male and female adults (Table 6-4
from USEPA 2011a). A 90" percentile outdoor air BBP concentration of 6.7 ng/m3 (IPCS 1999) from a
survey of 65 California homes was combined with the daily breathing rate of 18 m3/day and a body weight
of 80 kg. It is expected that Idaho homes will have similar air concentrations to those reported in the
California study.

In this assessment, dietary exposures are identical to those presented by FDEP (2014) and are based on
a 2000-2001 study from the USEPA (2011b) that assessed total exposure to BBP in preschool aged
children from Ohio and North Carolina. The daily intake was estimated to be 10 ug/kg-day based on
median estimates from individual sources (based on Ohio children; North Carolina exposure was reported
as lower). Sources included in the study were indoor and outdoor air, soil, dust, drinking water, food, and
dermal absorption. However, the FDEP conservatively assumes that the reported daily intake was solely
related to exposure to BBP through food.

Given the presence of BBP in consumer and personal care products, FDEP (2014) reviewed available
data from these exposure sources. As summarizes in FDEP (2014), Wormuth et al. (2006) conducted an
extensive analysis of exposure to eight phthalate esters, including BBP, in seven consumer groups in
Europe. The analysis included exposures from inhalation of indoor air, outdoor air, and while using spray
paints; dermal exposure from personal care products, gloves, and textiles; and oral exposure from food,
dust, mouthing (young children) and ingestion of personal care products. As such, the results of this study
are not representative of consumer products alone. However, mean total daily intakes for these exposure
pathways estimated by Wormuth et al. (2006) never exceeded 0.001 mg/kg bw-d, and were due primarily
to food intake. As the dietary exposure estimate of 0.010 mg/kg bw-d selected above (USEPA 2011b)
already accounts for many of these additional consumer product exposure pathways and is an order of
maghnitude greater than estimated by Wormuth et al. (2006), no additional exposure due to consumer
product use was assumed.

Based on the information summarized above, the inhalation exposures estimated by FDEP (2014) were
updated to account for USEPA'’s increase of the default body weight from 70 to 80 kilograms and use of a
daily inhalation rate based on the 90t percentile of adults. When that change is made, the RSC for BBP is
0.95, which is consistent with the selected FDEP RSC.
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Soil Ingestion Negligible
Treated Drinking Water ingestion Negligible
Inhalation of Air 1.51E-06
Diet 1.00E-02
Estimated Total Daily Dose 1.00E-02
Reference Dose 1.3
Relative Source Contribution 0.99

This RSC exceeds the 0.8 ceiling value recommended by USEPA (2015). However, the selected RSC of
0.99 is considered to be conservative and appropriate even for highly exposed populations for the
following reasons. First, the dietary and consumer product exposure assumption is likely greater than
actual exposures in the United States. United States studies of phthalate dietary intake (Schecter et al.
2013, Clark et al. 2011, Clark et al. 2003) generally report lower food concentrations than in Wormuth et al
(2006), and exposures are decreasing as BBP has been replaced with substitute products (Clark et al.
2011, Zota et al. 2014). The European estimates from Wormuth et al. (2006) showed much lower levels of
total exposure than estimated above in all consumer groups, including infants and toddlers, even when
consumer and personal care products were considered (mean estimates for the consumer groups ranged
from 0.00004 mg/kg-day to 0.00073 mg/kg-day), which is 13 to more than 200 times lower than the
estimate of exposure used to derive this RSC. Median daily intake estimates for highly exposed
populations (pregnant women, women of reproductive age, children, and infants) back-calculated from
BBP metabolites are also below the exposure estimate used to derive this RSC (Table 2.7 in CHAP
2014), and modelled 95™ percentile exposures are also below 0.010 mg/kg bw-d (Table 2.11 in CHAP
2014). Additionally, phthalates are widely used in laboratory equipment, which can result in higher
estimated concentrations in analyzed food samples (Guo and Kannan 2012), and the dietary estimates
above assume 100% bioavailability, which is likely to overestimate intakes. As BBP exposure from non-
ambient sources (diet and consumer product) contributes a small fraction of the RfD and exposure from
these sources is likely overestimated given recent trends BBP use, a default RSC ceiling of 0.8 is not
warranted.

It should also be noted that the recent 2015 USEPA update of HHAWQC for BBP (USEPA 2015) and the
Idaho proposed HHAWQC for BBP selected an RfD of 1.3 mg/kg-day based on a Health Canada
assessment (Health Canada 2000) and that the RSC of 0.99 is specific to the RfD of 1.3 mg/kg-day. The
FDEP used and RfD of 0.2 mg/kg-day based on the USEPA Integrated Risk Information System (IRIS)
assessment (USEPA 1989) when deriving their RSC. If the more stringent (lower) IRIS RfD is considered,
the RSC would decrease to 0.95. The use of the current IRIS RfD and lower RSC would result in a
decrease in the HHAWQC. If the final HHAWQC is based on the more recent Health Canada RfD, Arcadis
recommends the final HHAWQC for BBP incorporate the RSC of 0.99.
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8 TOLUENE

The recent 2015 USEPA update of HHAWQC (USEPA 2015) selected an RSC of 0.2 for toluene and
indicates that information is not available to quantitatively characterize exposure from potentially
significant sources. In 2014, the FDEP conducted an extensive review of the information available on
exposure to toluene. As a result of that review, FDEP derived an RSC of 0.55 for toluene (FDEP 2014).

Arcadis reviewed information relevant to the derivation of an RSC for toluene. Specifically, information
about concentrations of toluene in various environmental media and exposure assessment approaches
used by FDEP and USEPA were reviewed and updated as appropriate. Based on the physical properties
and available exposure information for toluene, air, drinking and diet are potentially significant sources. To
the contrary of USEPA’s conclusions and consistent with the information developed by FDEP in 2014,
sufficient data are available to develop conservative estimates of non-surface water exposure to toluene
and to develop a robust, scientifically defensible and conservative RSCs.

The FDEP (2014) review of American surface, tap, and drinking waters, indicates that toluene
concentrations typically found in treated drinking water are scarce. However, to calculate the RSC for the
drinking water ingestion route, FDEP (2014) uses the Maximum Contaminant level (MCL), which defines
the threshold above which water is not suitable for drinking, of 1,000 ug/L. Arcadis researched available
drinking water data for Idaho, including the National Drinking Water Database created by the EWG. EWG
requested water data from public and environmental health agencies from around the country and has
compiled nearly 20 million records from 45 states. According to EWG's analysis of water quality data
supplied by state water agencies, seven water utilities in Idaho reported detecting toluene in tap water
between 2005 and 2009. The average concentrations ranged from 0.01 ug/L to 0.65 ug/L, with a
maximum reported value of 2.8 ug/L. In this assessment, the maximum reported concentration was
utilized because it represents a conservative estimate of exposure. A standard water intake rate of 2.4
L/day and a standard body weight of 80 kg were also utilized in this drinking water exposure calculation
(USEPA 2011a).

Outdoor and indoor air inhalation toluene exposures were calculated consistent with methods presented in
FDEP (2014) with the exception of the assumed bodyweight and breathing rates. FDEP uses an assumed
bodyweight of 70 kg, whereas Arcadis assumes a bodyweight of 80 kg per USEPA (2011a). FDEP
assumes outdoor and indoor breathing rates of 3.12 m3/day and 12.88 m?3/day, respectively, derived from
a mean breathing rate of 16 m3/day obtained from USEPA (2011a) and an adjustment to account for time
spent outdoors (20%) versus indoors (80%) per Table 16-22a of USEPA 2011a. Arcadis uses this same
20%/80% adjustment to determine outdoor versus indoor exposures; however, Arcadis applies these
adjustments to the 90" percentile breathing rate of 18 m3/day (Table 6-4 USEPA, 2011a; mean of 90"
percentile male and female values) instead of the mean breathing rate, resulting in outdoor and indoor
breathing rates of 3.6 m3/day and 14.4 m3/day, respectively. The USEPA reports that average levels of
toluene measured in rural, urban, and indoor air are 1.3, 10.8, and 31.5 ug/m? respectively (USEPA 2012).
For the purposes of RSC calculation, the urban outdoor air average concentration of 10.8 ug/m3 was
selected to represent Idaho and combined with a breathing rate of 3.6 m®/day and a body weight of 80 kg
to determine outdoor inhalation exposures, while the mean indoor air toluene concentration (31.5 ug/m?)
was combined with a breathing rate of 14.4 m3/day and a body weight of 80 kg to determine indoor
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inhalation exposures. The mean California state-wide concentration of air-borne toluene measured in
1996 was reported as 2.26 ug/m3. The outdoor exposure concentration selected for this assessment is a
conservative estimate for Idaho-specific exposures because it does not account for rural areas with lower
reported concentrations. It is expected that Idaho state-wide ambient air concentrations would be similar
to those reported for California.

In this assessment, Arcadis calculates diet exposures by combining the estimated concentrations of
toluene in dietary items obtained from USFDA (2006) with per capita upper percentile food consumption
rates available from USEPA (2011a). This differs from FDEP in that FDEP (2014) relies on average per
capita consumption rates from USEPA (2011a) to derive dietary exposures to toluene. The dietary
exposures include exposure to fruits, vegetables, meats, grain, dairy, and marine fish. Arcadis assumed
an Idaho-specific marine fish consumption rate of 42.68 g/day based on the 90" percentile value of
“market fish” as presented in Buckman et al. (2015). This fish consumption rate is conservative as it
assumes that all market fish are marine fish. An Idaho-specific value exclusively for marine fish was not
presented in Buckman et al. (2015).

The recent 2015 USEPA update of HHAWQC (USEPA 2015) and the IDEQ proposed draft HHAWQC
selected an RfD of 0.0097 mg/kg-day for toluene based on a recent Health Canada assessment (Health
Canada 2015), while the value used in the FDEP RfD evaluation is 0.08 mg/kg-day based on the USEPA
IRIS assessment (USEPA 2005). The RfD used in the IDEQ proposed draft HHAWQC for toluene was
used in this assessment.

When the changes described above (i.e., updated drinking water concentrations; updated drinking water
ingestion rate; updated body weight for drinking water and inhalation exposures, updated indoor and
outdoor inhalation rates, revised food intake values, and a RfD of 0.0097 mg/kg-day) are incorporated into
the exposure estimates, the RSC for toluene becomes 0.92. The RSC is lower than that the RSC
developed by FDEP (2014) primarily because the RfD is more stringent (lower) than the RfD assumed by
FDEP. The Arcadis derived RSC combines upper bound exposure parameters with scientifically
defensible and conservative exposure concentrations that likely overestimate toluene exposures in Idaho.
Arcadis recommends that final HHAWQC for toluene incorporate the RSC derived in this report.
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Treated Drinking Water 8.4E-05
Inhalation of Indoor Air 5.67E-03
Inhalation of Outdoor Air 4.86E-04
Diet 4.67E-04
Estimated Total Daily Dose 6.71E-03
Reference Dose 0.0097
Relative Source Contribution 0.31

It should be noted that if the current USEPA IRIS RfD of 0.08 mg/kg-day is considered, the resulting
toluene RSC would increase to 0.92 and the HHAWQC would also increase, both because of the increase
in the RSC and the increase in the RfD.
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Disclaimer

This document has been reviewed in accordance with U.S. Environmental Protection Agency (EPA)
policy and approved for publication. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

This document was produced by a Technical Panel of the EPA Risk Assessment Forum (RAF). The
authors drew on their experience in doing probabilistic assessments and interpreting them to
improve risk management of environmental and health hazards. Interviews, presentations and
dialogues with risk managers conducted by the Technical Panel have contributed to the insights
and recommendations in this white paper and the associated document titled Probabilistic Risk
Assessment to Inform Decision Making: Frequently Asked Questions.

U.S. Environmental Protection Agency (USEPA). 2014. Risk Assessment Forum White Paper:
Probabilistic Risk Assessment Methods and Case Studies. EPA/100/R-09/001A. Washington, D.C.:
Risk Assessment Forum, Office of the Science Advisor, USEPA.
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Foreword

Throughout many of the U.S. Environmental Protection Agency’s (EPA) program offices and
regions, various forms of probabilistic methods have been used to answer questions about
exposure and risk to humans, other organisms and the environment. Risk assessors, risk managers
and others, particularly within the scientific and research divisions, have recognized that more
sophisticated statistical and mathematical approaches could be utilized to enhance the quality and
accuracy of Agency risk assessments. Various stakeholders, inside and outside of the Agency, have
called for a more comprehensive characterization of risks, including uncertainties, to improve the
protection of sensitive or vulnerable populations and lifestages.

The EPA identified the need to examine the use of probabilistic approaches in Agency risk
assessments and decisions. The RAF developed this paper and the companion document,
Probabilistic Risk Assessment to Inform Decision Making: Frequently Asked Questions, to provide a
general overview of the value of probabilistic analyses and similar or related methods, as well as
provide examples of current applications across the Agency. Drafts of both documents were
released, with slightly different titles, for public comment and external peer review in August 2009.
An external peer review was held in Arlington, Virginia in May 2010.

The goal of these publications is not only to describe potential and actual uses of these tools, but
also to encourage their further implementation in human, ecological and environmental risk
analysis and related decision making. The enhanced use of probabilistic analyses to characterize
uncertainty in assessments will not only be responsive to external scientific advice (e.g.,
recommendations from the National Research Council) on how to further advance risk assessment
science, but also will help to address specific challenges faced by managers and increase the
confidence in the underlying analysis used to support Agency decisions.

Robert Kavlock
Interim Science Advisor
U.S. Environmental Protection Agency
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EXECUTIVE SUMMARY

Probabilistic risk assessment (PRA), in its simplest form, is a group of techniques that incorporate
uncertainty and variability into risk assessments. Variability refers to the inherent natural
variation, diversity and heterogeneity across time, space or individuals within a population or
lifestage, while uncertainty refers to imperfect knowledge or a lack of precise knowledge of the
physical world, either for specific values of interest or in the description of the system (USEPA
2011c). Variability and uncertainty have the potential to result in overestimates or underestimates
of the predicted risk.

PRA provides estimates of the range and likelihood of a hazard, exposure or risk, rather than a
single point estimate. Stakeholders inside and outside of the Agency have recommended a more
complete characterization of risks, including uncertainties and variability, in protecting more
sensitive or vulnerable populations and lifestages. PRA can be used to support risk management by
assessment of impacts of uncertainties on each of the potential decision alternatives.

Numerous advisory bodies, such as the Science Advisory Board (SAB) and the National Research
Council (NRC) of the National Academy of Sciences (NAS), have recommended that EPA incorporate
probabilistic analyses into the Agency’s decision-making process. EPA’s Risk Assessment Forum
(RAF) formed a Technical Panel, consisting of representatives from the Agency’s program and
regional offices, to develop this white paper and its companion document, titled Probabilistic Risk
Assessment to Inform Decision Making: Frequently Asked Questions (FAQ). The RAF is recommending
the development of Agency resources, such as a clearinghouse of PRA case studies, best practices,
resources and seminars, to raise general knowledge about how these probabilistic tools can be
used.

The intended goal of this white paper is to explain how EPA can use probabilistic methods to
address data, model and scenario uncertainty and variability by capitalizing on the wide array of
tools and methods that comprise PRA. This white paper describes where PRA can facilitate more
informed risk management decision making through better understanding of uncertainty and
variability related to Agency decisions. The information contained in this document is intended for
both risk analysts and managers faced with determining when and how to apply these tools to
inform their decisions. This document does not prescribe a specific approach but, rather, describes
the various stages and aspects of an assessment or decision process in which probabilistic
assessment tools may add value.

Probabilistic Risk Assessment

PRA is an analytical methodology used to incorporate information regarding uncertainty and/or
variability into analyses to provide insight regarding the degree of certainty of a risk estimate and
how the risk estimate varies among different members of an exposed population, including
sensitive populations or lifestages. Traditional approaches, such as deterministic analyses, often
report risks as “central tendency,” “high end” (e.g., 90th percentile or above) or “maximum
anticipated exposure,” but PRA can be used to describe more completely the uncertainty
surrounding such estimates and identify the key contributors to variability or uncertainty in
predicted exposures or risk estimates. This information then can be used by decision makers to
achieve a science-based level of safety, to compare the risks related to different management
options, or to invest in research with the greatest impact on risk estimate uncertainty.

To support regulatory decision making, PRA can provide information to decision makers on specific
questions related to uncertainty and variability. For example, in the context of a decision analysis
that has been conducted, PRA can: identify “tipping points” where the decision would be different if



the risk estimates were different; estimate the degree of confidence in a particular decision; and
help to estimate trade-offs related to different risks or management options. PRA can provide
useful (even critical) information about the uncertainties and variability in the data, models,
scenario, expert judgments and values incorporated in risk assessments to support decision making
across the Agency.

PRA is applicable to both human health risk assessment (HHRA) and ecological risk assessment
(ERA); however, there are differences between how PRA is used for the two. Both HHRA and ERA
have a similar structure and use the same risk assessment steps, but HHRA focuses on individuals, a
single species, morbidity and mortality, but ERA is more concerned with multiple populations of
organisms (e.g., individual species of fish in a river) or ecological integrity (e.g., will the types of
species living in the river change over time). In ERA, there also is a reliance on indicators of impacts
(e.g., sentinel species and other metrics).

Risk Assessment at EPA

PRA began playing an increasingly important role in Agency risk assessments following the 1997
release of EPA’s Policy for Use of Probabilistic Analysis in Risk Assessment at the U.S. Environmental
Protection Agency (USEPA 1997a) and publication of the Guiding Principles for Monte-Carlo Analysis
(USEPA 1997b). PRA was a major focus in an associated review of EPA risk assessment practices by
the SAB (USEPA 2007b). The NRC recommended that EPA adopt a “tiered” approach for selecting
the level of detail used in uncertainty and variability assessment (NRC 2009). Furthermore, the NRC
recommended that a discussion about the level of detail used for uncertainty analysis and
variability assessment should be an explicit part of the planning, scoping and problem formulation
step in the risk assessment process. Both this white paper and the companion FAQ document take
into account recommendations on risk assessment processes described in the NRC's report Science
and Decisions: Advancing Risk Assessment (NRC 2009) and Environmental Decisions in the Face of
Uncertainty (I0M 2013).

EPA’s recent risk assessment publications, including the document titled Framework for Human
Health Risk Assessment to Inform Decision Making (UAEPA 2014b) as well as this white paper,
emphasize the importance of communicating the results of a PRA because it provides the range and
likelihood estimates for one or more aspects of hazard, exposure or risk, rather than a single point
estimate. Risk assessors are responsible for sharing information on probabilistic results so that
decision makers have a clear understanding of quantitative assessments of uncertainty and
variability, and how this information will affect the decision. Effective communication between the
risk assessor and decision maker is key to promote understanding and use of the results from the
PRA.

PRA generally requires more resources than standard Agency default-based deterministic
approaches. Appropriately trained staff and the availability of adequate tools, methods and
guidance are essential for the application of PRA. Proper application of probabilistic methods
requires not only software and data, but also guidance and training for analysts using the tools, and
for managers and decision makers tasked with interpreting and communicating the results. In most
circumstances, probabilistic assessments may take more time and effort to conduct than
conventional approaches, primarily because of the comprehensive inclusion of available
information on model inputs. The potentially higher resource costs may be offset, however, by a
more informed decision than would be provided by a comparable deterministic analysis.

Content of the White Paper and Frequently Asked Questions Companion Documents

These two documents describe how PRA can be applied to enhance the scientific foundation of
EPA’s decision making across the Agency. This white paper describes the challenges faced by EPA



decision makers, defines and explains the basic principles of probabilistic analysis, briefly
highlights instances where these techniques have been implemented in EPA decisions, and
describes criteria that may be useful in determining whether and how the application of
probabilistic methods may be useful and/or applicable to decision making. This white paper also
describes commonly employed methods to address uncertainty and variability, including those
used in the consideration of uncertainty in scenarios and uncertainty in models. Additionally, it
addresses uncertainty and variability in the inputs and outputs of models and the impact of these
uncertainties on each of the potential management options. A general description of the range of
methods from simple to complex, rapid to more time consuming and least to most resource
intensive is provided, as well as uses of these methods.

Both documents address issues such as uncertainty and variability, their relevance to decision
making and the PRA goal to provide quantitative characterization of the uncertainty and variability
in estimates of hazard, exposure, or risk. The difference between the white paper and the FAQs
document is the level of detail provided about PRA concepts and practices, and the intended
audience (e.g., risk assessors vs. decision makers). Detailed examples of applications of these
methods are provided in the Appendix of this white paper, which is titled “Case Study Examples of
the Application of Probabilistic Risk Analysis in U.S. Environmental Protection Agency Decision
Making.” The white paper Appendix includes 16 case studies—11 HHRA and 5 ERA examples—that
illustrate how EPA’s program and regional offices have used probabilistic techniques in risk
assessment. To aid in describing how these tools were applied, the 16 case studies are subdivided
among 3 categories for purposes of this document. Group 1 includes 2 case studies demonstrating
point estimate, including sensitivity analysis; Group 2 is comprised of 5 case studies demonstrating
probabilistic risk analysis, including one-dimensional Monte Carlo analysis and probabilistic
sensitivity analysis; and Group 3 includes 9 case studies demonstrating advanced probabilistic risk
analysis, including two-dimensional Monte Carlo analysis with micro exposure (micro
environments) modeling, Bayesian statistics, geostatistics and expert elicitation.

The FAQ document provides answers to common questions regarding PRA, including key concepts
such as scientific and institutional motivations for the use of PRA, and challenges in the application
of probabilistic techniques. The principal reason for including PRA as an option in the risk
assessor’s toolbox is its ability to support the refinement and improvement of the information
leading to decision making by incorporating known uncertainties.



1. INTRODUCTION: RELEVANCE OF UNCERTAINTY TO
DECISION MAKING: HOW PROBABILISTIC APPROACHES
CAN HELP

1.1. EPA Decision Making

To discuss where probabilistic approaches can aid EPA’s decision making, it is important to
generally describe the Agency’s current decision-making processes and how better understanding
and improving elements within these processes can clarify where probabilistic approaches might
provide benefits. The enhanced use of PRA and characterization of uncertainty would allow EPA
decision makers opportunities to use a more robust and transparent process, which may allow
greater responsiveness to outside comments and recommendations. Such an approach would
support higher quality EPA assessments and improve confidence in Agency decisions.

There are two major areas in the decision-making process that might be improved with PRA.
Scientists currently are generally focused on the first area—the understanding of data, model and
scenario uncertainties and variability. The second area is one that has not, until recently and only in
a limited fashion, been used by EPA decision makers. This area is formal decision analysis. With
decision analytic techniques, decision makers can weigh the relative importance of risk information
compared to other information in making the decision, understand how uncertainty affects the
relative attractiveness of potential decision alternatives, and assess overall confidence in a decision.
In addition to data, model and scenario uncertainty, there is a separate category of uncertainties
specifically associated with how the decision criteria relate to the decision alternatives. Although it
is quite relevant to risk management decisions, the topic and decision analysis in general are
outside of the scope of this report. This white paper focuses on technical information that would
allow better understanding of the relationships among alternative decisions in assessing risks.

1.2. The Role of Probabilistic Risk Analysis in Characterizing
Uncertainty and Variability

Probabilistic analyses include techniques that can be applied formally to address both uncertainty
and variability, typically arising from limitations of data, models or adequately formulating the
scenarios used in assessing risks. Probability is used in science, business, economics and other
fields to examine existing data and estimate the chance of an event, from health effects to rain to
mental fatigue. One can use probability (chance) to quantify the frequency of occurrence or the
degree of belief in information. For variability, probability distributions are interpreted as
representing the relative frequency of a given state of the system (e.g., that the data are distributed
in a certain way); for uncertainty, they represent the degree of belief or confidence that a given
state of the system exists (e.g., that we have the appropriate data; Cullen and Frey 1999). PRA often
is defined narrowly to indicate a statistical or thought process used to analyze and evaluate the
variability of available data or to look at uncertainty across data sets.

For the purposes of this document, PRA is a term used to describe a process that employs
probability to incorporate variability in data sets and/or the uncertainty in information (such as
data or models) into analyses that support environmental risk-based decision making. PRA is used
here broadly to include both quantitative and qualitative methods for dealing with scenario, model
and input uncertainty. Probabilistic techniques can be used with other types of analysis, such as
benefit-cost analysis, regulatory impact analysis and engineering performance standards; thus, they
can be used for a variety of applications and by experts in many disciplines.



1.3. Goals and Intended Audience

The primary goals of this white paper are to introduce PRA, describe how it can be used to better
inform and improve the decision-making process, and provide case studies where it has been used
in human health and ecological analyses at EPA (see the Appendix for the case studies). A secondary
goal of this paper is to bridge communication gaps regarding PRA among analysts of various
disciplines, between these analysts and Agency decision makers, and among affected stakeholders.
This white paper also is intended to serve as a communication tool to introduce key concepts and
background information on approaches to risk analysis that incorporate uncertainty and provide a
more comprehensive treatment of variability. Risk analysts, decision makers and affected
stakeholders can benefit from understanding the potential uses of PRA. PRA and related
approaches can be used to identify additional research that may reduce uncertainty and more
thoroughly characterize variability in a risk assessment. This white paper explains how PRA can
enhance the decision-making processes faced by managers at EPA by better characterizing data,
model, scenario and decision uncertainties.

1.4. Overview of This Document

This white paper provides an overview of EPA’s interest and experience in addressing uncertainty
and variability using probabilistic methods in risk assessment; identifies key questions asked or
faced by Agency decision makers; demonstrates how conventional deterministic approaches to risk
analysis may not answer these questions fully; provides examples of applications; and shows how
and why “probabilistic risk analysis” (broadly defined) could provide added value, compared to
traditional methods, with regard to regulatory decision making by more fully characterizing risk
estimates and exploring decision uncertainties. For the purposes of this white paper, PRA and
related tools for both human health and ecological assessments include a range of approaches, from
statistical tools, such as sensitivity analysis, to multi-dimensional Monte Carlo models, geospatial
approaches and expert elicitation. Key points addressed by this document include definitions and
key concepts pertaining to PRA, benefits and challenges of PRA, a general conceptual framework for
PRA, conclusions regarding products and insights obtained from PRA, and examples where EPA has
used PRA in human health and ecological analyses. A Glossary and a Bibliography also are provided.

1.5. What Are Common Challenges Facing EPA Risk Decision
Makers?

EPA operates under statutory and regulatory constraints that often limit the types of criteria that
can be considered (including whether the use of PRA is appropriate) and impose strict timeframes
in which decisions must be made. Typically, the decision begins with understanding (1) who or
what will be protected; (2) the relationship between the data and decision alternatives; and (3) the
impact of data, model and decision uncertainties related to each decision alternative. These are
among the considerations of the planning and scoping and problem formulation phases of risk
assessment (US EPA 2014). EPA decision makers need to consider multiple decision criteria, which
are informed by varying degrees of confidence in the underlying information. Decision makers need
to balance the regulatory/ statutory requirements and timeframes, resources (i.e., expertise, costs
of the analysis, review times, etc.) to conduct the assessment, management options, and
stakeholders while at the same time keeping risk assessment and decision making separate.

Uncertainty can be introduced into any assessment at any step in the process, even when using
highly accurate data with the most sophisticated models. Uncertainty can be reduced or better
characterized through knowledge. Variability or natural heterogeneity is inherent in natural
systems and therefore cannot be reduced, but can be examined and described. Uncertainty in
decisions is unavoidable because real-world situations cannot be perfectly measured, modeled or



predicted. As a result, EPA decision makers face scientifically complex problems that are
compounded by varying levels of uncertainty and variability. If uncertainty and variability have not
been well characterized or acknowledged, potential complications arise in the process of decision
making. Increased uncertainty can make it more difficult to determine, with reasonable confidence,
the balance point between the costs of regulation and the implications for avoiding damages and
producing benefits. Characterization facilitated by probabilistic analyses can provide insight into
weighing the relative costs and benefits of varying levels of regulation and also can assist in risk
communication activities.

Decision makers often want to know who is at risk and by how much, the tradeoffs between
alternative actions and the likely or possible consequences of decisions. To this end, it is
particularly useful for decision makers to understand the distribution of risk across potentially
impacted populations and ecological systems. It can be important to know the number of
individuals experiencing different magnitudes of risk, the differences in risk magnitude experienced
by individuals in different lifestages or populations or the probability of an event that may lead to
unacceptable levels of risk. Given the limitations of data, traditional methods of risk analyses are
not well suited to produce such estimates. Probabilistic analytical methods are capable of
addressing these shortcomings and can contribute to a more thorough recognition of the impact of
data gaps on the projected risk estimates. Although PRA can be used to characterize the uncertainty
and variability in situations with limited data, currently there is not extensive experience using PRA
to characterize the range of effects or dose-response relationships for populations, including
sensitive populations and lifestages.

Other challenges facing EPA decision makers include the need to consider multiple decision criteria,
which are informed by varying degrees of confidence in the underlying information, understanding
the relationship between and among those decision criteria (including multi-pollutant and multi-
media effects) and the decision alternatives, and the timeliness of the decision making.
Furthermore, even when PRA is used, EPA decision makers must be mindful of potential misuses
and obfuscations when conducting or presenting PRA results. Decision makers also need to
consider the evolving science behind PRA. As the use of PRA increases decision makers will become
more familiar with the techniques and their application.

A risk assessment process needs to consider uncertainties, variability and the rationale or factors
influencing how they may be addressed by a decision maker. Decision makers need a foundation for
estimating the value of collecting additional information to allow for better informed decisions.
There are costs associated with ignoring uncertainty (McConnell 1997 and Toll 1999), and a focus
by decision makers on the information provided by uncertainty analysis can strengthen their
choices.

1.6. What Are Key Uncertainty and Variability Questions Often Asked
by Decision Makers?

As described above, determining the decision-making context and specific concerns is a critical first
step toward developing a useful and responsive risk assessment that will support the decision. For
example, the appropriate focus and level of detail of the analysis should be commensurate with the
needs of the decision maker and stakeholders, as well as the appropriate use of science. Analyses
often are conducted at a level of detail dictated by the issue being addressed, the breadth and
quality of the available information upon which to base an analysis, and the significance
surrounding a decision. The analytical process tends to be iterative. Although a guiding set of
questions may frame the initial analyses, additional questions can arise that further direct or even
reframe the analyses.



Based on a series of discussions with Agency decision makers and risk assessors, some typical
questions about uncertainty and variability relevant to risk analyses including:

O Factors influencing decision uncertainty:

e  Would my decision be different if the data were different, improved or expanded?
Would additional data collection and research likely lead to a different decision?
How long will it take to collect the information, how much would it cost, and would
the resulting decision be significantly altered?

e What are the liabilities and consequences of making a decision under the current
level of knowledge and uncertainty?

e How do the alternatives and their associated uncertainty and variability affect the
target population or lifestage?

O Considerations for evaluating data or method uncertainty:

e How representative or conservative is the estimate due to data or method
uncertainty (also incorporating variability)?

e What are the major gaps in knowledge, and what are the major assumptions used in
the assessment? How reasonable are the assumptions?

O Issues arising when addressing variability:

e (an a probabilistic approach (e.g., to better characterize uncertainties and
variability) be accomplished in a timely manner?

e Whatis the desired percentile of the population to be protected? By choosing this
percentile, who may not be protected?

The questions that arise concerning uncertainty and variability change depending on the stage and
nature of the decision-making process and analysis. General phases of the risk assessment process
are illustrated in Figure 1. For further information on the process of decision making, we suggest
referring to the description provided by EPA Region 3 on the Multi-Criteria Integrated Resource
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Figure 1. General Phases of the Risk Assessment Process. Risk assessment is an iterative process
comprised of planning, scoping and problem formulation; analysis (e.g., hazard identification, dose-
response assessment and exposure assessment); interpretation and risk characterization; and risk
communication. The highlighted boxes explain how PRA fits into the overall process.

Assessment Internet page at http://www.epa.gov/reg3esd1/data/mira.htm. The utility of various
levels of analysis and sophistication in answering these questions is illustrated in the case studies
described in Section 1.10 and presented in the Appendix of this white paper. References to
examples beyond these EPA case studies can be found in the Bibliography. Additionally, Lester et al.
(2007) identified more than 20 PRA application case studies (including EPA examples) performed
since 2000; these case study examples are categorized as site-specific applications and regional risk
assessments.




1.7. Why Is the Implementation of Probabilistic Risk Analysis
Important?

The principal reason for the inclusion of PRA as an option in the risk assessor’s toolbox is PRA’s
ability to support refinement and improvement of the information leading to decision making by
incorporating known uncertainties. Beginning as early as the 1980s, expert scientific advisory
groups, such as the National Research Council (NRC), recommended that risk analyses include a
clear discussion of the uncertainties in risk estimation (NRC 1983). The NRC stated the need to
describe uncertainty and to capture variability in risk estimates (NRC 1994). The Presidential/
Congressional Commission on Risk Assessment and Risk Management (PCCRARM) recommended
against a requirement or need for a “bright line” or single-number level of risk (PCCRARM 1997).
See Section 2.4 for more information regarding the scientific community’s opinion on the use of
PRA.

Regulatory science often requires selection of a limit for a contaminant, yet that limit always
contains uncertainty as to how protective it is. PRA and related tools quantitatively describe the
very real variations in natural systems and living organisms, how they respond to stressors, and the
uncertainty in estimating those responses.

Risk characterization became EPA policy in 1995 (USEPA 1995b), and the principles of
transparency, clarity, consistency and reasonableness are explicated in the 2000 Risk
Characterization Handbook (USEPA 2000a). Transparency, clarity, consistency and reasonableness
criteria require decision makers to describe and explain the uncertainties, variability and known

data gaps in the risk analysis and how they affect the resulting decision-making processes (USEPA
1992, 19954, 2000a).

The use of probabilistic methods also has received support from some decision makers within the
Agency, and these methods have been incorporated into a number of EPA decisions to date.
Program offices, such as the Office of Pesticide Programs (OPP), Office of Solid Waste and
Emergency Response (OSWER), Office of Air and Radiation (OAR), and Office of Water (OW), as well
as the Office of Research and Development (ORD), have utilized probabilistic approaches in
different ways and to varying extents, for both human exposure and ecological risk analyses. In
addition, OSWER has provided explicit guidance on the use of probabilistic approaches for
exposure analysis (USEPA 2001). Some program offices have held training sessions on Monte Carlo
simulation (MCS) software that is used frequently in probabilistic analyses.

The NRC recommended that EPA should adopt a tiered approach for selecting the level of detail
used in uncertainty and variability assessment (NRC 2009). Furthermore, NRC recommended that a
discussion about the level of detail used for uncertainty analysis and variability assessment should
be an explicit part of the planning, scoping and problem formulation step in the risk assessment
process. The way that PRA fits into a graduated hierarchical (tiered) approach is more fully
described in Section 2.10 and illustrated in Figure 2.

When it is beneficial to refine risk estimates, the use of PRA can help in the characterization and
communication of uncertainty, variability and the impact of data gaps in risk analyses for assessors,
decision makers and stakeholders (including the target population or lifestage).



Tier 3: Advanced PRA (High Complexity)
Probabilistic techniques (e.g., 2-D Monte Carlo Analysis)
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Figure 2. Tiered Approach for Risk Assessment. The applicability of a probabilistic approach depends on
the needs of decision makers and stakeholders. Assessments that are high in complexity and regulatory
significance benefit from the application of probabilistic techniques.

Source: Adapted from USEPA 2004a and WHO 2008.

1.8. How Does EPA Typically Address Scientific Uncertainty and
Variability?

Environmental assessments can be complex, such as covering exposure to multiple chemicals in
multiple media for a wide-ranging population. The Agency has developed simplified approaches to
characterize risks associated with such complex assessments through the use of point estimates for
model variables or parameters. Such an approach typically produces point estimates of risks (e.g.,
10-5 or a lifetime probability of cancer risk of one individual in 100,000). These often are called
“deterministic” assessments. As a result of the use of point estimates for variables in model
algorithms, deterministic risk results usually are reported as what are assumed to be either average
or worst-case estimates. They do not contain any quantitative estimate of the uncertainty in that
estimate, nor report what percentile of the exposed population the estimate applies. The methods
typically used in EPA risk assessments rely on a combination of point values with potentially
varying levels of conservatism and certainty, yielding a point estimate of exposure at some point in
the range of possible risks.

Because uncertainty is inherent in all risk assessments, it is important that the risk assessment
process enable handling uncertainties in a logical way that is transparent and scientifically
defensible, consistent with the Agency’s statutory mission and responsive to the needs of decision
makers (NRC 1994). Uncertainty is a factor in both ecological and human health risk assessments.
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For human health risk assessments, uncertainties arise for both noncancer and cancer endpoints.
Thus, when data are missing, EPA often uses several options to provide boundaries on uncertainty
and variability in an attempt to avoid risk underestimation; attempting to give a single
quantification of how much confidence there is in the risk estimate may not be informative or
feasible.

In exposure assessment, for example, the practice at EPA is to collect new data where they are
needed and where time and resources allow. Alternative approaches to address uncertainty include
narrowing the scope of the assessment; using screening-level default assumptions that include
upper-end values and/or central tendency values that are generally combined to generate risk
estimates that fall within the higher end of the population risk range (USEPA 2004b); applying
models to estimate missing values; using surrogate data (e.g., data on a parameter that come from a
different region of the country than the region being assessed); or applying professional judgment.
The use of individual assumptions can range from qualitative (e.g., assuming that one is secured to
the residence location and does not move through time or space) to more quantitative (e.g., using
the 95th percentile of a sample distribution for an ingestion rate). This approach also can be
applied to the practice of hazard identification and dose-response assessment when data are
missing. [dentifying the sensitivity of exposure or risk estimates to key inputs can help focus efforts
to reduce uncertainty by collecting additional data.

Current EPA practices to address uncertainty and variability are focused on the evaluation of data,
model, and scenario uncertainty and variability. In addition, decision makers are faced with
combining many different decision criteria that may be informed by science and PRA as well as by
expert judgment or the weighting of values to choose a decision alternative. Data, model, and
scenario uncertainties and variability (including their probability distributions), as well as expert
judgment, can be important considerations in the selection of one alternative over another
(Costanza et al. 1997; Morgan et al. 2009; Stahl and Cimorelli 2005; Wright et al. 2002).

1.9. What Are the Limitations of Relying on Default-Based
Deterministic Approaches?

Default-based deterministic approaches are applied to data, model and scenario uncertainties.
Deterministic risk assessment (DRA) often is considered a traditional approach to risk analysis
because of the existence of established guidance and procedures regarding its use, the ease with
which it can be performed, and its limited data and resource needs. The use of defaults supporting
DRA provides a procedural consistency that allows for risk assessments to be feasible and tractable.
Decision makers and members of the public tend to be relatively familiar with DRA, and the use of
such an approach addresses assessment-related uncertainties primarily through the incorporation
of predetermined default values and conservative assumptions. It addresses variability by
combining input parameters intended to be representative of typical or higher end exposure (i.e.,
considered to be conservative assumptions). The intention often is to implicitly provide a margin of
safety (i.e., more likely to overestimate risk than underestimate risk) or construct a screening-level
estimate of high-end exposure and risk (i.e., an estimate representative of more highly exposed and
susceptible individuals).

DRA provides an estimation of the exposures and resulting risks that addresses uncertainties and
variabilities in a qualitative manner. The methods typically used in EPA DRA rely on a combination
of point values—some conservative and some typical—yielding a point estimate of exposure that is
at some unknown point in the range of possible risks. Although this conservative bias aligns with
the public health mission of EPA (USEPA 2004b), the degree of conservatism in these risk estimates
(and in any concomitant decision) cannot be estimated well or communicated (Hattis and
Burmaster 1994). Typically, this results in unquantified uncertainty in risk statements.
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Quantitative information regarding the precision or potential systematic error and the distribution
of exposures, effects and resulting risks across different members of an exposed population are
usually not provided with estimates generated using default approaches. Although DRA may
present qualitative information regarding the robustness of the estimates, the impact of data and
model limitations on the quality of the results cannot be quantified. Reliance on deterministically
derived estimations of risk can result in decision making based solely on point estimates with an
unknown degree of conservatism, which can complicate the comparison of risks or management
options.

In risk assessments of noncancer endpoints, metrics such as an oral reference dose (RfD) and an
inhalation reference concentration (RfC) are typically used. The use of conservative defaults long
has been the target of criticism (Finkel 1989) and has led to the presumption by critics that EPA
assessments are overly conservative and unrealistic. The use of PRA would be advantageous in
eliminating a single value and might be less likely to imply undue precision and lessen the need for
conservative assumptions, thereby reducing bias in the estimate. In the probabilistic framework, a
probability distribution would be used to express the belief that any particular value represents the
dose or exposure concentration that would pose no appreciable risk of adverse effects (NRC 2009).
EPA is investigating the use of PRA to derive risk values for RfD and RfC in EPA’s Integrated Risk
Information System (IRIS) Database (www.epa.gov/IRIS/).

EPA commissioned a white paper (Hattis and Lynch 2010) presented at the Hazardous Air Pollutant
Workshop, 2009, illustrating the implementation of probabilistic methods in defining RfDs and
assessing the benefits for reducing exposure to toxicants that act in part through traditional
individual threshold processes. The use of PRA, among other things, makes provision for
interactions with background pathological processes, as recommended by the NRC (2009), and
shows how the system can inform assessments for “data-poor” toxicants.

PRA may be more suitable than DRA for complex assessments, including those of aggregate and
cumulative exposures and time-dependent individual exposure, dose and effects analyses.
Identification and prioritization of contributory sources of uncertainty can be difficult and time
consuming when using deterministic methods, leading to difficulties in model evaluation and the
subsequent appraisal of risk estimates (Cullen and Frey 1999). Quantitative analyses of model
sensitivities are essential for the prioritization of key uncertainties—a critical process in identifying
steps for data collection or research to improve exposure or risk estimates.

1.10. What Is EPA’s Experience with the Use of Probabilistic Risk
Analysis?

EPA’s experience with PRA has, to date, primarily been limited to the evaluation of data, model and
scenario uncertainties. To assist with the growing number of probabilistic analyses of exposure
data in these uncertainty areas, EPA issued Guiding Principles for Monte Carlo Analysis (USEPA
1997b). Given adequate supporting data and credible assumptions, probabilistic analysis
techniques, such as Monte Carlo analysis, can be viable statistical tools for analyzing uncertainty
and variability in risk assessments. EPA’s policy for the use of probabilistic analysis in risk
assessment, released in 1997, is inclusive of human exposure and ecological risk assessments and
does not rule out probabilistic health effects analyses (USEPA 1997a). Subsequently, EPA’s SAB and
Scientific Advisory Panel (SAP) have reviewed PRA approaches to risks used by EPA offices such as
OAR, OPP and others. Several programs have developed specific guidance on the use of PRA,
including OPP and OSWER (USEPA 1998a, 2001).

To illustrate the practical application of PRA to problems relevant to the Agency, several example
case studies are briefly described here. The Appendix titled Case Study Examples of Application of
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Probabilistic Risk Analysis in U.S. Environmental Protection Agency Regulatory Decision Making,
discusses these and other case studies in greater detail, including the procedures and outcomes.
The Appendix includes 16 case studies—11 HHRA and 5 ERA examples—that are intended to
illustrate how some of EPA’s programs and offices currently utilize PRA. To aid in describing how
probabilistic analyses were used, the 16 case studies are subdivided among 3 categories of PRA
tools: Group 1—point estimate, including sensitivity analysis; Group 2—probabilistic risk analysis,
including one-dimensional Monte Carlo analysis (1-D MCA) and probabilistic sensitivity analysis;
and Group 3—advanced probabilistic risk analysis, including two-dimensional Monte Carlo analysis
(2-D MCA) with microexposure (microenvironments) modeling, Bayesian statistics, geostatistics
and expert elicitation .

It is useful to note that the NRC (2009) recommended a tiered approach to risk assessment using
both qualitative and quantitative (deterministic and probabilistic) tools, with the complexity of the
analysis increasing as progress is made through the tiers. The use of PRA tools to address issues of
uncertainty and variability in a tiered approach is described more completely in Section 2.10 and
was illustrated in Figure 2. The three tiers illustrated in that figure approximately correspond to the
three groups of EPA case studies described in the Appendix that provide examples of the use of
various PRA tools.

Table A-1 in the Appendix offers a summary of the 16 case studies based on the type of risk
assessment, the PRA tools used in the assessment, and the EPA program or regional office
responsible for the assessment. Some of the approaches that are profiled in these case studies can
be used in the planning and scoping phases of risk assessments and risk management. Other, more
complex PRA approaches are used to answer more specific questions and provide a richer
description of the risks. Most studies show that PRA can improve or expand on information
generated by deterministic methods. In some of the case studies, the use of multiple PRA tools is
illustrated. For example, Case Study 1 describes the use of a point estimate sensitivity analysis to
identify exposure variables critical to the analysis summarized in Case Study 9. Both of these case
studies focus on children’s exposure to chromated copper arsenate (CCA)-treated wood. In Case
Study 9, an MCA was used as an example of a two-dimensional (i.e., addressing both variability and
uncertainty) probabilistic exposure assessment.

Overall, the case studies illustrate that the Agency already has applied the science of PRA to
ecological risk and human exposure estimation and has begun using PRA to describe health effects.
Some of the applications have used existing “off-the-shelf” software, whereas others have required
significant effort and resources. Once developed, however, some of the more complex models have
been used many times for different assessments. All of the assessments have been validated by
internal and external peer review. Table 1 gives some highlights the case studies from deterministic
to more complex assessments, which are described in more detail in the Appendix.
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Table 1. Selected Examples of EPA Applications of Probabilistic Risk Assessment Techniques

Stl?:;ilo. Description Group KZZ:;E;I: Office/Region
Atmospheric Deposition to Watershed
Contamination: The Office of Research and
Development (ORD) developed an analysis of Grou 1: Point
2 nitrogen, mercury and polycyclic aromatic Estimpaté Ecological ORD
hydrocarbons (PAHs) depositions toward
watershed contamination in the Casco Bay
Estuary in southwestern Maine.
Hudson River Polychlorinated Biphenyl
(PCB)-Contaminated Sediment Site: Region G )
2 evaluated the variability in risks to anglers roup 2. Superfund/
5 Yy . 1-D Monte Carlo Human Health Region 2
who consume recreationally caught fish Analysis (New York)
contaminated with PCBs from sediment
contamination in the Hudson River.
Environmental Monitoring and Assessment
Program (EMAP): ORD developed and the Group 2:
7 Office.of Water.(OW) applied probabilistip ’ Probgpi!istic Ecological ORD/OW
sampling techniques to evaluate the Nation’s Sensitivity
aquatic resources under the Clean Water Act | Analysis
(CWA) Section 305(b).
Chromated Copper Arsenate (CCA) Risk
Assessment: ORD and the Office of Pesticide
Programs (OPP) conducted a probabilistic Group 3:
9 assessment of children’s exposure 2-D Monte Carlo Human Health ORD/OPP
(addressing both variability and uncertainty) to | Analysis
arsenic and chromium from contact with CCA-
treated wood play sets and decks.
Evaluating Ecological Effects of Pesticide
Uses: OPP developed a probabilistic model, Group 3:
13 which evaluates acute mortality levels in Probabilistic Ecological OPP
generic and specific ecological species for Analysis
user-defined pesticide uses and exposures.
Fine Particulate Matter Health Impacts:
ORD and the Office of Air and Radiation
(OAR) used expert elicitation to more
14 comp[etgly characterize, bpth qualitatiyely and Gro'up.3: Expert Human Health ORD/OAR
quantitatively, the uncertainties associated Elicitation
with the relationship between reduction in fine
particulate matter (PM2s) and benefits of
reduced PM2s-related mortality.
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2. PROBABILISTIC RISK ANALYSIS

2.1. What Are Uncertainty and Variability, and How Are They Relevant
to Decision Making?

The concepts of uncertainty and variability are introduced here, and the relevance of these
concepts to decision making is discussed.

2.1.1.  Variability

Variability refers to real differences over time, space or members of a population and is a property
of the system being studied (e.g., drinking water consumption rates for each of the many individual
adult residents living in a specific location or differences in body lengths or weights for humans or
ecological species) (Cullen and Frey 1999; USEPA 2011c). Variability can arise from inherently
random processes, such as variations in wind speed over time at a given location or from true
variation across members of a population that, in principle, could be explained, but which, in
practice, may not be explainable using currently available models or data (e.g., the range of lead
levels in the blood of children 6 years old or younger following a specific degree of lead exposure).
Of particular interest in both HHRA and ERA is inter-individual variability, which typically refers to
differences between members of the same population in either behavior related to exposure (e.g.,
dietary consumption rates for specific food items), or biokinetics related to chemical uptake (e.g.,
gastrointestinal uptake rates for lead following intake) or toxic response (e.g., differences among
individuals or species in the internal dose needed to produce a specific amount of neurological
impairment).

Inter-individual variability is illustrated in Case Study 5 in the Appendix, which assesses a PCB-
contaminated sediment site in the Hudson River. In this case study, the quantification of variability
is illustrated through the use of a PRA tool—1-D MCA—to describe the variability of exposure as a
function of individual exposure factors (i.e., young children’s fish ingestion).

2.1.2. Uncertainty

Uncertainty is the lack of knowledge of the true value of a quantity or relationships among
quantities (USEPA 2011c). For example, there may be a lack of information regarding the true
distribution of variability between individuals for consumption of certain food items. There are a
number of types of uncertainties for both risk analysis. The following descriptions of the types of
uncertainty (adapted from Cullen and Frey 1999) addresses uncertainties that arise during risk
analyses. These uncertainties can be separated broadly into three categories: (1) scenario
uncertainty; (2) model uncertainty; and (3) input or parameter uncertainty. Each of these is
explained in the paragraphs that follow.

Scenario uncertainty refers to errors, typically of omission, resulting from incorrect or incomplete
specification of the risk scenario to be evaluated. The risk scenario refers to a set of assumptions
regarding the situation to be evaluated, such as: (1) the specific sources of chemical emissions or
exposure to be evaluated (e.g., one industrial facility or a cluster of varied facilities impacting the
same study area); (2) the specific receptor populations and associated exposure pathways to be
modeled (e.g., indoor inhalation exposure, track-in dust or consumption of home-produced dietary
items); and (3) activities by different lifestages to be considered (e.g., exposure only at home, or
consideration of workplace or commuting exposure). Mis-specification of the risk scenario can
result in underestimation, overestimation or other mischaracterization of risks. Underestimation
may occur because of the exclusion of relevant situations or the inclusion of irrelevant situations
with respect to a particular analysis. Overestimation may occur because of the inclusion of
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unrealistic or irrelevant situations (e.g., assuming continuous exposure to an intermittent airborne
contaminant source rather than accounting for mobility throughout the day).

Model uncertainty refers to limitations in the mathematical models or techniques that are
developed to represent the system of interest and often stems from: (1) simplifying assumptions;
(2) exclusion of relevant processes; (3) mis-specification of model boundary conditions (e.g., the
range of input parameters); or (4) misapplication of a model developed for other purposes. Model
uncertainty typically arises when the risk model relies on missing or improperly formulated
processes, structures or equations. Sources of model uncertainty are defined in the Glossary.

Input or parameter uncertainty typically refers to errors in characterizing the empirical values used
as inputs to the model (e.g., engineering, physical, chemical, biological or behavioral variables).
Input uncertainty can originate from random or systematic errors involved in measuring a specific
phenomenon (e.g., biomarker measurements, such as the concentration of mercury in human hair);
statistical sampling errors associated with small sample sizes (e.g., if the data are based on samples
selected with a random, representative sampling design); the use of surrogate data instead of
directly measured data; the absence of an empirical basis for characterizing an input (e.g., the
absence of measurements for fugitive emissions from an industrial facility); or the use of summary
measures of central tendency rather than individual observations. Nonlinear random processes can
exhibit a behavior that, for small changes in input values, produces a large variation in results.

Input or parameter uncertainty is illustrated in Case Study 3 in the Appendix titled “Probabilistic
Assessment of Angling Duration Used in the Assessment of Exposure to Hudson River Sediments via
Consumption of Contaminated Fish.” In this case study, a probabilistic analysis of one parameter in
an exposure assessment—the time an individual spends fishing in a large river system—was
assessed using sensitivity analysis. This analysis was conducted because there was uncertainty that
the individual exposure duration based on residence duration may underestimate the time spent
fishing (i.e., angling duration). The full distribution of the calculated values was used in conducting
the 1-D MCA for the fish consumption pathway, which is presented in Case Study 5.

Decision uncertainty refers to a decision analysis that would include not only the impact of scenario,
model and input uncertainties on the relative attractiveness of potential decision alternatives, but
also would include the degree to which specific choices (such as selecting input data, models, and
scenarios, and even how the problem or decision analysis is framed) impact the relative
attractiveness of potential decision alternatives. In decision making, analysts use data to represent
decision criteria that decision makers and other stakeholders believe will help them to answer their
decision question(s). These questions might include which policy alternative best meets Agency
goals (that must be articulated) or which risk assessment scenario best describes the observed
effects. Data, model and scenario uncertainties will influence the risk assessment results and those,
in turn, will influence the risk management options. Decision makers who understand the
uncertainty associated with their specific choices can be more confident that the decision will
produce the results that they seek. In addition, these decision makers will be able to defend their
decisions better and explain how the decision meets Agency and stakeholder goals.

While this is beyond the scope of this document, Stahl and Cimorelli (2005 and 2012) illustrate how
uncertainty throughout the decision making process can be assessed. These case studies explored
the assessment of ozone monitoring networks and air quality management policies that seek to
minimize the adverse impacts from ozone, fine particulate matter and air toxics simultaneously.
These case studies demonstrate the importance and feasibility of better understanding the
uncertainty introduced by specific choices (e.g., selecting input data, models, and scenarios) when
making public policy decisions.
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2.2. When Is Probabilistic Risk Analysis Applicable or Useful?

PRA may be particularly useful, for example, in the following (Cooke 1991; Cullen and Frey 1999;
NRC 2009; USEPA 2001):

(0 When a screening-level DRA indicates that risks are possibly higher than a level of concern
and a more refined assessment is needed.

O When the consequences of using point estimates of risk are unacceptably high.

O When significant equity or environmental justice issues are raised by inter-individual
variability.

a

To estimate the value of collecting additional information to reduce uncertainty.

a

To identify promising critical control points and levels when evaluating management
options.

O To rank exposure pathways, sites, contaminants and so on for the purposes of prioritizing
model development or further research.

a

When combining expert judgments on the significance of the data.

O When exploring the impact of the probability distributions of stakeholder and decision-
maker values on the attractiveness of potential decision alternatives (Fischhoff 1995; Illing
1999; Kunreuther and Slovic 1996; USEPA 2000b).

O When exploring the impact of the probability distributions of the data, model and scenario
uncertainties, and variability together to compare potential decision alternatives.

PRA may add minimal value to the assessment in the following types of situations (Cullen and Frey
1999; USEPA 1997a):

O When a screening-level deterministic risk assessment indicates that risks are negligible,
presuming that the assessment is known to be conservative enough to produce
overestimates of risk.

0 When the cost of averting the exposure and risk is smaller than the cost of a probabilistic
analysis.

0 When there is little uncertainty or variability in the analysis (this is a rare situation).

2.3. How Can Probabilistic Risk Analysis Be Incorporated Into
Assessments?

As illustrated in the accompanying case studies in the Appendix, probabilistic approaches can be
incorporated into any stage of a risk assessment, from problem formulation or planning and
scoping to the analysis of alternative decisions. In some situations, PRA can be used selectively for
certain components of an assessment. It is common in assessments that some model inputs are
known with high confidence (i.e., based on site-specific measurements), whereas values for other
inputs are less certain (i.e., based on surrogate data collected for a different purpose). For example,
an exposure modeler may determine that relevant air quality monitoring data exists, but there is a
lack of detailed information on human activity patterns in different microenvironments. Thus, an
assessment of the variability in exposure to airborne pollutants might be based on direct use of the
monitoring data, whereas assessment of uncertainty and variability in the inhalation exposure
component might be based on statistical analysis of surrogate data or use of expert judgment. The
uncertainties are likely to be larger for the latter than the former component of the assessment;
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efforts to characterize uncertainties associated with pollutant exposures would focus on the latter.
PRA also deals with dependency issues; a description of these issues is available in Section 3.3.2.

2.4. What Are the Scientific Community’s Views on Probabilistic Risk
Analysis, and What Is the Institutional Support for Its Use in
Performing Assessments?

The NRC and IOM recently emphasized their long-standing advocacy for PRA (NRC 2007a and b;
IOM 2013). Dating from its 1983 Risk Assessment in the Federal Government: Managing the Process
(NRC 1983)—which first formalized the risk assessment paradigm—through reports released from
the late 1980s through the early 2000s, various NRC panels have maintained consistently that
because risk analysis involves substantial uncertainties, these uncertainties should be evaluated
within a risk assessment. These panels noted that:

1. When evaluating the total population risk, EPA should consider the distribution of exposure
and sensitivity of response in the population (NRC 1989).

2. When assessing human exposure to air pollutants, EPA should present model results along
with estimated uncertainties (NRC 1991).

3. When conducting ERA, EPA should discuss thoroughly uncertainty and variability within
the assessment (NRC 1993).

4. “Uncertainty analysis is the only way to combat the ‘false sense of certainty,” which is caused
by a refusal to acknowledge and [attempt to] quantify the uncertainty in risk predictions,”
as stated in the NRC report, Science and Judgment in Risk Assessment (NRC 1994).

5. EPA’s estimation of health benefits was not wholly credible because EPA failed to deal
formally with uncertainties in its analyses (NRC 2002).

6. EPA should adopt a “tiered” approach for selecting the level of detail used in uncertainty
and variability assessment. Furthermore, the NRC recommended that a discussion of the
level of detail used for uncertainty analysis and variability assessment should be an explicit
part of the planning, scoping and problem formulation phase of the risk assessment process
(NRC 2009).

7. EPA should develop methods to systematically describe and account for uncertainties in
decision-relevant factors in addition to estimates of health risk in its decision-making
process (IOM 2013).

Asked to recommend improvements to the Agency’s HHRA practices, EPA’s SAB echoed the NRC’s
sentiments and urged the Agency to characterize uncertainty and variability more fully and
systematically and to replace single-point uncertainty factors with a set of distributions using
probabilistic methods (Parkin and Morgan 2007). The key principles of risk assessment cited by the
Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB)
include “explicit” characterization of the uncertainties in risk judgments; they proceed to cite the
National Academy of Science’s (NAS) 2007 recommendation to address the “variability of effects
across potentially affected populations” (OSTP/OMB 2007).
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2.5. Additional Advantages of Using Probabilistic Risk Analysis and
How It Can Provide More Comprehensive, Rigorous Scientific
Information in Support of Regulatory Decisions.

External stakeholders previously have used the Administrative Procedure Act and the Data Quality
Act to challenge the Agency for a lack of transparency and consistency or for not fully analyzing and
characterizing the uncertainties in risk assessments or decisions (Fisher et al. 2006). The more
complete implementation of PRA and related approaches to deal with uncertainties in decision
making would address stakeholder concerns in regard to characterizing uncertainties.

The results of any assessment, including PRA, are dependent on the underlying methods and
assumptions. Accompanied by the appropriate documentation, PRA may communicate a more
robust representation of risks and corresponding uncertainties. This characterization may be in the
form of a range of possible estimates as opposed to the more traditionally presented single-point
values. Depending on the use of the assessment, ranges can be derived for variability and
uncertainty (or a combination of the two) in both model inputs and resulting estimations of risk.

PRA quantifies how exposures, effects and risks differ among human populations or lifestages or
target ecological organisms. PRA also provides an estimation of the degree of confidence with
which these estimates may be made, given the current uncertainty in scientific knowledge and
available data. A 2007 NRC panel stated that the objective of PRAs is not to decide “how much
evidence is sufficient” to adopt an alternative but, rather, to describe the scientific bases of
proposed alternatives so that scientific and policy considerations may be more fully evaluated (NRC
2007a). EPA’s SAB similarly noted that PRAs provide more “value of information” through a
quantitative assessment of uncertainty and clarify the science underlying Agency decisions (USEPA
2007Db).

The SAB articulated a number of advantages for EPA decision makers from the utilization of
probabilistic methods (Parkin and Morgan 2007):

O A probabilistic reference dose could help reduce the potentially inaccurate implication of
zero risk below the RfD.

O By understanding and explicitly accounting for uncertainties underlying a decision, EPA can
estimate formally the value of gathering more information. By doing so, the Agency can
better prioritize its information needs by investing in areas that yield the greatest
information value.

O Strategic use of PRA would allow EPA to send the appropriate signal to the intellectual
marketplace, thereby encouraging analysts to gather data and develop methodologies
necessary for assessing uncertainties.

2.6. What Are the Challenges to Implementation of Probabilistic
Analyses?

Currently, EPA is using PRA in a variety of programs to support decisions, but challenges remain
regarding the expanded use of these tools within the Agency. The challenges include:

O Alack of understanding of the value of PRA for decision making. PRA helps to improve the
rigor of the decision-making process by allowing decision makers to explore the impacts of
uncertainty and variability on the decision choices.

O A clear institutional understanding of how to incorporate the results of probabilistic
analyses into decision making is lacking.
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O PRA typically requires a different skill set than used in current evaluations, and limited
resources (staff, time, training or methods) to conduct PRA are available.

O Communicating probabilistic analysis results and the impact of those results on the
decision/policy options can be complex.

O Communication with stakeholders is often difficult and results in the appearance of
regulatory delays due the necessity of analyzing numerous scenarios using various models.

0 PRA complicates decision making and risk communication in instances where a more
comprehensive characterization of the uncertainties leads to a decrease in clarity regarding
how to estimate risk for the scenario under consideration. These challenges are discussed in
more detail in Sections 2.7 through 2.13.

2.7. How Can Probabilistic Risk Analysis Support Specific Regulatory
Decision Making?

Decision makers sometimes perceive that the binary nature of regulatory decisions (e.g., Does an
exposure exceed a reference dose or not? Do emissions comply with Agency standards or not?)
precludes the use of a risk range developed through PRA. Generally, it is necessary to explain the
rationale underlying a particular decision. PRA’s primary purpose is to provide information to
enhance the ability to make transparent decisions based on the best available science. By
conducting a sensitivity analysis of the influence of the uncertainty on the decision-making process,
it can be determined how or if PRA can help to improve the process.

PRA can provide information to decision makers on specific questions related to uncertainty and
variability. For questions of uncertainty and to minimize the likelihood of unintended
consequences, PRA can help to provide the following types of information:

O Characterization of the uncertainty in estimates (i.e,, What is the degree of confidence in the
estimate?). Could the prediction be off by a factor of 2, a factor of 10 or a factor of 1,000?

O Critical parameters and assumptions that most affect or influence a decision and the risk
assessment.

O “Tipping points” where the decision would be altered if the risk estimates were different, or
if a different assumption was valid.

O Estimate the likelihood that values for critical parameters will occur or test the validity of
assumptions.

(0 Estimate the degree of confidence in a particular decision and/or the likelihood of specific
decision errors.

O The possibility of alternative outcomes with additional information, or estimate tradeoffs
related to different risks or risk-management decisions.

O The impact of additional information on decision making, considering the cost and time to
obtain the information and the resulting change in decision (i.e., the value of the
information).

For the consideration of variability, PRA can help to provide the following types of information for
exposures:

O Explicitly defined exposures for various populations or lifestages (i.e., Who are we trying to
protect?). That is, will the regulatory action keep 50 percent, 90 percent, 99.9 percent or
some other fraction of the population below a specified exposure, dose or risk target?
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0 Variability in the exposures, among various populations or lifestages, and information on
the percentile of the population that is being evaluated in the risk assessment (e.g.,
variations in the number of liters of water per kilogram [kg] body weight per day consumed
by the population). This information is helpful in addressing comments:

e On the conservatism of EPA’s risk assessments;

e Concerns about whether their particular exposures were evaluated in the risk
assessment;

e  Whom or what is being protected by implementing a decision; and
e  Whether and what additional research may be needed to reduce uncertainty.

PRA helps to inform decisions by characterizing the alternatives available to the decision maker
and the uncertainty he or she faces, and by providing evaluation measures of outcomes.
Uncertainties often are represented as probabilities or probability distributions numerically or in
graphs. As part of a decision analysis, stakeholders can more fully examine how uncertainties
influence the preference among alternatives.

2.8. Does Probabilistic Risk Analysis Require More Resources Than
Default-Based Deterministic Approaches?

PRA generally can be expected to require more resources than standard Agency default-based
deterministic approaches. There is extensive experience within EPA in conducting and reviewing
DRA. These assessments tend to follow standardized methods that minimize the effort required to
conduct them and to communicate the results. Probabilistic assessments often entail a more
detailed analysis, and as a result, these assessments require substantially more resources, including
time and effort, than do deterministic approaches.

Appropriately trained staff and the availability of adequate tools, methods and guidance are
essential for the application of PRA. Proper application of probabilistic methods requires not only
software and data, but also guidance and training for analysts using the tools and for managers and
decision makers tasked with interpreting and communicating the results.

An upfront increase in resources needed to conduct a probabilistic assessment can be expected, but
development of standardized approaches and/or methods can lead to the routine incorporation of
PRA in Agency approaches (e.g., OPP’s use of the Dietary Exposure Evaluation Model [DEEM;
http://www.epa.gov/pesticides/science/deem/], a probabilistic dietary exposure model). The
initial and, in some cases, ongoing resource cost (e.g., for development of site-specific models for
site assessments) may be offset by a more informed decision than a comparable deterministic
analysis. Probabilistic methods are useful for identifying effective management options and
prioritizing additional data collection or research aimed at improving risk estimation, ultimately
resulting in decisions that enable improved environmental protection while simultaneously
conserving more resources.

2.9. Does Probabilistic Risk Analysis Require More Data Than
Conventional Approaches?

There are differences of opinion within the technical community as to whether PRA requires more
data than other types of analyses. Although some emphatically believe that PRA requires more data,
others argue that probabilistic assessments make better use of all of the available data and
information. Stahl and Cimorelli (2005) discuss when and how much data are necessary for a
decision. PRA can benefit from more data than might be used in a DRA. For example, where DRA
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might employ selected point estimates (e.g., the mean or 95th percentile values) from available data
sets for use in model inputs, PRA facilitates the use of frequency-weighted data distributions,
allowing for a more comprehensive consideration of the available data. In many cases, the data that
were used to develop the presumptive 95th percentile can be employed in the development of
probabilistic distributions.

Restriction of PRA to principally data-rich situations may prevent its broader application where it is
most useful. Because PRA incorporates information on data quality, variability and uncertainty into
risk models, the influence of these factors on the characterization of risk can become a greater focus
of discussion and debate.

A key benefit of using PRA is its ability to reveal the limitations as well as the strengths of data that
often are masked by a deterministic approach. In doing so, PRA can help to inform research
agendas, as well as support regulatory decision making, based on the state of the best available
science. In summary, PRA typically requires more time for developing input assumptions than a
DRA, but when incorporated into the relevant steps of the risk assessment process, PRA can
demonstrate added benefits. In some cases, PRA can provide additional interpretations that
compensate for the extra effort required to conduct a PRA.

2.10. Can Probabilistic Risk Analysis Be Used to Screen Risks or Only
in Complex or Refined Assessments?

Probabilistic methods typically are not necessary where traditional default-based deterministic
methods are adequate for screening risks. Such methods are relatively low cost, intended to
produce conservatively biased estimates, and useful for identifying situations in which risks are so
low that no further action is needed. The application of probabilistic methods can be targeted to
situations in which a screening approach indicates that a risk may be of concern or when the cost of
managing the risk is high, creating a need for information to help inform decision making. PRA fits
directly into a graduated hierarchical approach to risk analysis. This tiered approach, depicted in
Figure 2, is a process for a systematic informed progression to increasingly more complex risk
assessment methods, depending on the decision-making context and need. Higher tiers reflect
increasing complexity and often will require more time and resources. An analysis might typically
start at a lower tier and only progress to a higher tier if there is a need for a more sophisticated
assessment commensurate with the importance of the problem. Higher tiers also reflect increasing
characterization of variability and/or uncertainty in the risk estimate, which may be important for
risk-management decisions. The case studies described in the Appendix are presented in three
groups that generally correspond to the tiers identified in Figure 2. Group 1 case studies are point
estimate (sensitivity analysis) examples (Tier 1); Group 2 case studies include most moderate-
complexity PRA examples (Tier 2); and Group 3 case studies are advanced (high complexity) PRA
examples (Tier 3).

The tiered approach in Figure 2 depicts a continuum from screening level point estimate that is
done with little data and conservative assumptions to PRA that requires an extensive data set and
more realistic (less conservative) assumptions. In between, there can be a wide variety of tiers of
increasing complexity, or there may be only a few reasonable choices between screening methods
and highly refined analyses (USEPA 2004a). A similar four-tiered approach for characterizing the
variability and/or uncertainty in the estimated exposure or risk analysis (WHO 2008) has been
adapted by EPA in the risk and exposure assessments conducted for the National Ambient Air
Quality Standards (NAAQS).

PRA also could be used to examine more fully the existing default-based methods based on the
current state of information and knowledge to determine if such methods are truly conservative
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and adequate for screening (e.g., in dose-response analyses dealing with hazard characterization)
(Swartout et al. 1998; Hattis et al. 2002).

The use of a spectrum of data should be employed both in determining screening risks and in more
complex assessments. For HHRA, data from human, animal, mechanistic and other studies should
be used to develop a probabilistic characterization of cancer and noncancer risks and to identify
uncertainties. The NRC recommended that EPA facilitate this approach by redefining RfD and RfC
within the probabilistic framework to take into account the probability of harm (NRC 2009). It is
likely that both DRA and PRA will be part of this framework.

2.11. Does Probabilistic Risk Analysis Present Unique Challenges to
Model Evaluation?

The concept of “validation” of models used for regulatory decision making has been a topic of
intense discussion. In a recent report on the use of models in environmental regulatory decision
making, the NRC recommended using the notion of model “evaluation” rather than “validation,”
suggesting that use of a process that encompasses the entire life cycle of the model and
incorporates the spectrum of interested parties in the application of the model often extends
beyond the model builder and decision maker. Such a process can be designed to ensure that
judgment of the model application is based not only on its predictive value determined from
comparison with historical data, but also on its comprehensiveness, rigor in development,
transparency and interpretability (NRC 2007b).

Model evaluation is important in all risk assessments. In the case of PRA, there is an additional
question as to the validity of the assumptions regarding probability and frequency distributions for
model inputs and their dependencies. Probabilistic information can be accounted for during
evaluation analyses by considering the range of uncertainty in the model prediction and whether
such a range overlaps with the “true” value based on independent data. Thus, probabilistic
information can aid in characterizing the precision of the model predictions and whether a
prediction is significantly different from a benchmark of interest. For example, comparisons of
probabilistic model results and monitoring data were performed for multiple models in developing
the cumulative pesticide exposure model. Concurrent PRA model evaluations using a Bayesian
analysis also have been published (Clyde 2000).

When risk assessors develop models of risk, they rely on two predominant statistical methods. Both
methods arise from axioms of probability, but each applies these axioms differently. Under the
frequentist approach, one develops and evaluates a model by testing whether the model—as
applied to the observations—conforms to idealized distributions. Under the Bayesian approach,
one develops and evaluates a model by testing which—among alternative models—best yields the
underlying distribution describing the data. The practical differences between these two
approaches can perhaps best be appreciated when considering the structural uncertainty in models
(Section 3.3.3). Because Bayesians estimate model parameters with the expectation that these
parameters—or even model structures—will be updated as new data become available, they have
developed formal techniques to provide uncertainty bounds around these parameter estimates,
select models that best explain the given data, or combine the results of alternative models.

2.12. How Do You Communicate the Results of Probabilistic Risk
Analysis?

Effective communication makes it easier for regulators and stakeholders to understand the decision
criteria driving the decision-making process. In other words, communication of PRA results within
the decision-making context facilitates understanding. The specific approaches for reporting results
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from PRA vary depending on the assessment objective and the intended audience. Beyond the basic
1997 principles and the policy from the same year (USEPA 1997a and b), the Risk Assessment
Guidance for Superfund: Volume IlI—Part A, Process for Conducting Probabilistic Risk Assessment also
provides some guidance on the quality and criteria for acceptance as well as communication basics
(USEPA 2001). There have been limited studies of how information from PRA regarding uncertainty
and variability can or should be communicated to key audiences, such as decision makers and
stakeholders (e.g., Morgan and Henrion 1990; Bloom et al. 1993; Krupnick et al. 2006). Among the
analyst community, there often is an interest in visualization of the structure of a scenario and
model using influence diagrams and depiction of the uncertainty and variability in model inputs
and outputs using probability distributions in the form of cumulative density functions or
probability distribution functions (Figure 3). Sensitivity of the model output to uncertainty and
variability in model inputs can be depicted using graphical tools.

In some cases, these graphical methods can be useful for those less familiar with PRA, but in many
cases there is a need to translate the quantitative results into a message that extracts the key
insights without burdening the decision maker with obscure technical details. In this regard, the
use of ranges of values for a particular metric of decision-making relevance (e.g., the range of
uncertainty associated with a particular estimate of risk) may be adequate. The presentation of PRA
results to a decision maker may be conducted best as an interactive discussion, in which a principal
message is conveyed, followed by exploration of issues such as the source, quality and degree of
confidence associated with the information. There is a need for the development of
recommendations and a communication plan regarding how to communicate the results of PRA to
decision makers and stakeholders, building on the experience of various programs and regions.

2.13. Are the Results of Probabilistic Risk Analysis Difficult to
Communicate to Decision Makers and Stakeholders?

Research has shown that the ability of decision makers to deal with concepts of probability and
uncertainty varies. Bloom et al. (1993) surveyed a group of senior managers at EPA and found that
many could interpret information about uncertainty if it was communicated in a manner
responsive to decision-maker interests, capabilities and needs. In a more recent survey of ex-EPA
officials, Krupnick et al. (2006) concluded that most had difficulty understanding information on
uncertainty with conventional scientific presentation approaches. The findings of these studies
highlight the need for practical strategies for the communication of results of PRA and uncertainty
information between risk analysts and decision makers, as well as between decision makers and
other stakeholders. The Office of Emergency and Remedial Response (OERR) has compiled
guidance to assist analysts and managers in understanding and communicating the results of PRA
(USEPA 2001).

Risk analysts need to focus on how to use uncertainty analysis to characterize how confident
decision makers should be in their choices. As Wilson (2000) explained, “... uncertainty is the bane
of any decision maker’s existence. Thus, anyone who wants to inform decisions using scientific
information needs to assure that their analyses transform uncertainty into confidence in
conclusions.” Hence, although environmental risk assessments are complicated and it is easy to get
lost in the details, presenting and discussing these results within the context of the decision
facilitates understanding. The translation of uncertainty into confidence statements forces a “top-
down” perspective that promotes accounting for whether and how uncertainties affect choices (Toll
etal 1997).
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Figure 3. Graphical Description of the Likelihood (Probability) of Risk. Hypothetical fitted data
distribution with upper and lower confidence intervals are depicted for the output of a 2-D MCA
model.
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3. AN OVERVIEW OF SOME OF THE TECHNIQUES USED IN
PROBABILISTIC RISK ANALYSIS

3.1. What Is the General Conceptual Approach in Probabilistic Risk
Analysis?

PRA includes several major steps, which parallel the accepted environmental health risk
assessment process. These include: (1) problem and/or decision criteria identification;

(2) gathering information; (3) interpreting the information; (4) selecting and applying models and
methods for quantifying variability and/or uncertainty; (5) quantifying inter-individual or
population uncertainty and variability in metrics relevant to decision making; (6) sensitivity
analysis to identify key sources of variability and uncertainty; and (7) interpreting and reporting
results.

Problem formulation entails identifying the assessment endpoints or issues that are relevant to the
decision-making process and stakeholders, and that can be addressed in a scientific assessment
process. Following problem formulation, information is needed from stakeholders and experts
regarding the scenarios to evaluate. Based on the scenarios and assessment endpoints, the analysts
select or develop models, which in turn leads to identification of model input data requirements
and acquisition of data or other information (e.g., expert judgment encoded as the result of a formal
elicitation process) that can be used to quantify inputs to the models. The data or other information
for model inputs is interpreted in the process of developing probability distributions to represent
variability, uncertainty or both for a particular input. Thus, steps (1) through (4) listed above are
highly interactive and iterative in that the data input requirements and how information is to be
interpreted depend on the model formulation, which depends on the scenario and that in turn
depends on the assessment objective. The assessment objective may have to be refined depending
on the availability of information.

Once a scenario, model and inputs are specified, the model output is estimated. A common
approach is to use Monte Carlo Analysis (MCA) or other probabilistic methods to generate samples
from the probability distributions of each model input, run the model based on one random value
from each probabilistic input, and produce one corresponding estimate of the model outputs. This
process is repeated typically hundreds or thousands of times to create a synthetic statistical sample
of model outputs. These output data are interpreted as a probability distribution of the output of
interest. Sensitivity analysis can be performed to determine which model input distributions are
most highly associated with the range of variation in the model outputs. The results may be
reported in a wide variety of forms depending on the intended audience, ranging from qualitative
summaries to tables, graphs and diagrams.

Detailed introductions to PRA methodology are available elsewhere, such as Ang and Tang (1984),
Cullen and Frey (1999), EPA (2001), and Morgan and Henrion (1990). A few key aspects of PRA
methodology are briefly mentioned here. Readers who seek more detail should consult these
references and see the Bibliography for additional references.

3.2. What Levels and Types of Probabilistic Risk Analyses Are There
and How Are They Used?

There are multiple levels and types of analysis used to conduct risk assessments (illustrated in
Figure 2 and Table 1, respectively). Graduated approaches to analysis are widely recognized (e.g.,
USEPA 19973, 2001; WHO 2008). The idea of a graduated approach is to choose a level of detail and
refinement for an analysis that is appropriate to the assessment objective, data quality, information
available and importance of the decision (e.g., resource implications).
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As discussed in section 1.8, there is a variety of approaches to risk assessment that differ in their
complexity and the manner in which they address uncertainty and variability. In DRA one does not
formally characterize uncertainty or variability but rather typically relies on using default-based
assumptions and factors to generate a single estimate of risk. In PRA there is a variety of
approaches to explicitly address or characterize uncertainty or variability in risk estimates and
these differ in terms of how they accomplish this, the data used, and the overall complexity. Some
examples are:

O  Sensitivity analysis

Monte Carlo analysis of variability in exposure data
Human health or ecological effects data

Monte Carlo analysis of uncertainty

“Cumulative” PRA—multi-pathway or multi-chemical
Two-dimensional PRA of uncertainty and variability

Decision uncertainty analysis

aaogoaooaaaoaaq

Geospatial analysis
O  Expertelicitation

The DRA approaches described in Section 1.8 are examples of lower levels in a graduated approach
to analysis. Risk at the lower levels of analysis is assessed by conservative, bounding assumptions.
If the risk estimate is found to be very low despite the use of conservative assumptions, then there
exists a great deal of certainty that the actual risks to the population of interest for the given
scenario are below the level of concern and no further intervention is required, assuming that the
scenario and model specifications are correct. When a conservative DRA indicates that a risk may
be high, it is possible that the risk estimate is biased and the actual risk may be lower. In such a
situation, depending on the resource implications of the decision, it may be appropriate to proceed
with a more refined or higher level of analysis. The relative costs of intervention versus further
analysis should be considered when deciding whether to proceed with a decision based on a lower
level analysis or to escalate to a higher level of analysis. In some deterministic assessments (e.g.,
ecological risks), the assumptions are not well assured of conservatism, and the estimated risks
might be biased to appear lower than the unseen actual risk.

A more refined analysis could involve the application of DRA methods, but with alternative sets of
assumptions intended to characterize central tendency and reasonable upper bounds of exposure,
effects and risk estimates, such that the estimates could be for an actual individual in the population
of interest rather than a hypothetical maximally exposed individual. Such analyses are not likely to
provide quantification regarding the proportion of the population at or below a particular exposure
or risk level of concern, uncertainties for any given percentile of the exposed population, or
priorities among input assumptions with respect to their contributions to uncertainty and
variability in the estimates.

To more fully answer the questions often asked by decision makers, the analysis can be further
refined by incorporating quantitative comparisons of alternative modeling strategies (to represent
structural uncertainties associated with scenarios or models), quantifying ranges of uncertainty
and variability in model outputs, and providing the corresponding ranges for model outputs of
interest. When performing probabilistic analyses, choices are made regarding whether to focus on
the quantification of variability only, uncertainty only, both variability and uncertainty together
(representing a randomly selected individual), or variability and uncertainty independently (e.g., in
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a two-dimensional depiction of probability bands for estimates of inter-individual variability; see
Figure 4). The simultaneous but distinct propagation of uncertainty and variability in a two-
dimensional framework enables quantification of uncertainty in the risk for any percentile of the
population. For example, one could estimate the range of uncertainty in the risk faced by the
median member of the population or the 95th percentile member of the population. Such
information can be used by a decision maker to gauge the confidence that should be placed in any
particular estimate of risk, as well as to determine whether additional data collection or
information might be useful to reduce the uncertainty in the estimates. The OPP assessment of
Chromated Copper Arsenate-treated wood used such an approach. (See Case Study 9 in the

Appendix.)
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Figure 4. Diagrammatic Comparison of Three Alternative Probabilistic Approaches for the Same
Exposure Assessment. In Option 1 (one dimensional Monte Carlo analysis), only variability is quantified.
In Option 2 (one dimensional Monte Carlo analysis), both uncertainty and variability are combined. In
Option 3 (two dimensional Monte Carlo analysis), variability and uncertainty are analyzed separately.
Source: WHO 2008.

When conducting an analysis for the first time, it may not be known or clear, prior to analysis,
which components of the model or which model inputs contribute the most to the estimated risk or
its uncertainty and variability. As a result of completing an analysis, however, the analyst often
gains insight into the strengths and weaknesses of the models and input information. Probabilistic
analysis and sensitivity analysis can be used together to identify the key sources of quantified
uncertainty in the model outputs to inform decisions regarding priorities for additional data
collection. Ideally, time should be allowed for collecting such information and refining the analysis
to arrive at a more representative and robust estimate of uncertainty and variability in risk. Thus,
the notion of iteration in developing and improving an analysis is widely recommended.
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The notion of iteration can be applied broadly to the risk assessment framework. For example, a
first effort to perform an analysis may lead to insight that the assessment questions might be
impossible to address, or that there are additional assessment questions that may be equally or
more important. Thus, iteration can include reconsideration of the initial assessment questions and
the corresponding implications for definition of scenarios, selection of models and priorities for
obtaining data for model inputs. Alternatively, in a time-limited decision environment, probabilistic
and sensitivity analyses may offer insight into the effect of management options on risk estimates.

3.3. What Are Some Specific Aspects of and Issues Related to
Methodology for Probabilistic Risk Analysis?

This section briefly describes a few key aspects of PRA, model development and associated
uncertainties. Detailed introductions to PRA methodology are available elsewhere, such as Ang and
Tang (1984), Morgan and Henrion (1990), Cullen and Frey (1999) and EPA (2001). For more
detailed information, consult these references and see the Bibliography for additional sources.

3.3.1. Developing a Probabilistic Risk Analysis Model

There are two key issues that should be considered in developing a PRA model; as discussed below.

Structural Uncertainty in Scenarios

A potentially key source of uncertainty in an analysis is the scenario, which includes specification of
pollutant sources, transport pathways, exposure routes, timing and locations, geographic extent
and related issues. There is no formalized methodology for dealing quantitatively with uncertainty
and variability in scenarios. Decisions regarding what to include or exclude from a scenario could
be recast as hypotheses regarding which agents, pathways, microenvironments, etc., contribute
significantly to the overall exposure and risk of interest. In practice, however, the use of qualitative
methods to frame an assessment tends to be more common, given the absence of a formal
quantitative methodology.

Coupled Models

For source-to-outcome risk assessments, it often is necessary to work with multiple models, each of
which represents a different component of a scenario. For example, there may be separate models
for emissions, air quality, exposure, dose and effects. Such models may have different spatial and
temporal scales. When conducting an integrated assessment, there may be significant challenges
and barriers to coupling such models into one coherent framework. Sometimes, the coupling is
done dynamically in a software environment. In other cases, the output of one model might be
processed manually to prepare the information for input to the next model. Furthermore, there may
be feedback between components of the scenario (e.g., poor air quality might affect human activity,
which, in turn, could affect both emissions and exposures) that are incompletely captured or not
included. Thus, the coupling of multiple models can be a potentially significant source of structural
uncertainty (Ozkaynak 2009).

3.3.2. Dealing With Dependencies Among Probabilistic Inputs

When representing two or more inputs to a model as probability distributions, the question arises
as to whether it is reasonable to assume that the distributions are statistically independent. If there
is a dependence, it could be as simple as a linear correlation between two inputs, or it could be
more complicated, such as nonlinear or nonmonotonic relationships. Dependencies typically are
not important if the risk estimate or other model output is sensitive to one or none of the
probabilistic inputs that might have interdependence. Furthermore, dependencies typically are not
of practical importance if they are weak. When dependencies exist and might significantly influence
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the risk estimate, they can be taken into account using a variety of statistical simulation methods or,
perhaps more appropriately, by modeling the dependence analytically where possible. Details on
methods for assessing the importance of possible dependencies and of quantifying them when
needed are described in Ferson et al. (2004 and 2009).

For some types of models, such as air quality models, it is not possible to introduce a probability
distribution to one input (e.g., ambient temperature at a particular location) without affecting
variables at other locations or times (e.g., temperatures in other locations at the same times or
temporal trends in temperature). In such cases, it is better to produce an “ensemble” of alternative
temperature fields, each of which is internally consistent. Individual members of an ensemble
usually are not interpreted as representing a probability sample; however, comparison of multiple
ensembles of meteorological conditions, for example, can provide insight into natural sources of
variability in ambient concentrations.

3.3.3. Conducting the Probabilistic Analysis
Quantifying Uncertainty and Variability in Model Inputs and Parameters

After the models are selected or developed to simulate a scenario of interest, attention typically
turns to the development of input data for the model. There is a substantial amount of literature
regarding the application of statistical methods for quantifying uncertainty and variability in model
inputs and parameters based on empirical data (e.g., Ang and Tang 1984; Cullen and Frey 1999;
Morgan and Henrion 1990; USEPA 2001). For example, a commonly used method for quantifying
variability in a model input is to obtain a sample of data, select a type of parametric probability
distribution model to fit to the data (e.g., normal, lognormal or other form), estimate the
parameters of the distribution based on the data, critique the goodness-of-fit using graphical (e.g.,
probability plot) and statistical (e.g., Anderson-Darling, Chi-Square or Kolmogorov-Smirnov tests)
methods and choose a preferred fitted distribution. This methodology can be adjusted to
accommodate various types of data, such as data that are samples from mixtures of distributions or
that contain non-detected (censored) values. Uncertainties can be estimated based on confidence
intervals for statistics of interest, such as mean values, or the parameters of frequency distributions
for variability. Various texts and guidance documents, both Agency and programmatic, describe
these approaches, including the Guiding Principles for Monte Carlo Analysis (USEPA 1997b).

The most common method for estimating a probability distribution in the output of a model, based
on probability distributions specified for model inputs, is MCS (Cullen and Frey 1999; Morgan and
Henrion 1990). MCS is popular because it is very flexible. MCS can be used with a wide variety of
probability distributions as well as different types of models. The main challenge for MCS is that it
requires repetitive model calculations to construct a set of pseudo-random numbers for model
inputs and the corresponding estimates for model outputs of interest. There are alternatives to MCS
that are similar but more computationally efficient, such as Latin Hypercube Sampling (LHS).
Techniques are available for simulating correlations between inputs in both MCS and LHS. For
models with very simple functional forms, it may be possible to use exact or approximate analytical
calculations, but such situations are encountered infrequently in practice. There may be situations
in which the data do not conform to a well-defined probability distribution. In such cases,
algorithms (such as Markov Chain Monte Carlo) can estimate a probability distribution by
calculating a mathematical form describing the pattern of observed data. This form, called the
likelihood function, is a key component of Bayesian inference and, therefore, serves as the basis for
some of the analytical approaches to uncertainty and variability described below.

The use of empirical data presumes that the data comprise a representative, random sample. If
known biases or other data quality problems exist, or if there is a scarcity or absence of relevant
data, then naive reliance on available empirical data is likely to result in misleading inferences in
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the analysis. Alternatively, estimates of uncertainty and variability can be encoded, using formal
protocols, based on elicitation of expert judgment (e.g., Morgan and Henrion 1990, USEPA 2011a).
Elicitation of expert judgment for subjective probability distributions is used in situations where
there are insufficient data to support a statistical analysis of uncertainty, but in which there is
sufficient knowledge on the part of experts to make an inference regarding uncertainty. For
example, EPA conducted an expert elicitation study on the concentration-response relationship
between the annual average ambient less than 2.5 micrometer (um) diameter particulate matter
(PM2s) exposure and annual mortality (IEC 2006; see also Case Studies 6 and 14 in the Appendix).
Subjective probability distributions that are based on expert judgment can be “updated” with new
data as they become available using Bayesian statistical methods.

Structural Uncertainty in Models

There may be situations in which it proves useful to evaluate not just the uncertainties in inputs
and parameter values, but also uncertainties regarding whether a model adequately captures—in a
hypothesized, mathematical, structured form—the relationship under investigation. A qualitative
approach to evaluating the structural uncertainty in a model includes describing the critical
assumptions within a model, the documentation of a model or the model quality, and how the
model fits the purpose of the assessment. Quantitative approaches to evaluating structural
uncertainty in models are manifold. These include parameterization of a general model that can be
reduced to alternative functional forms (e.g., Morgan and Henrion 1990), enumeration of
alternative models in a probability tree (e.g., Evans et al. 1994), comparing alternative models by
evaluating likelihood functions (e.g., Royall 1997; Burnham and Anderson 2002), pooling results of
model alternatives using Bayesian model averaging (e.g., Hoeting et al. 1999) or testing the causal
relationships within alternative models using Bayesian Networks (Pearl 2009).

Sensitivity Analysis: Identifying the Most Important Model Inputs

Probabilistic methods typically focus on how uncertainty or variability in a model input affect [or
result in] with respect to uncertainty or variability in a model output. After a probabilistic analysis
is completed, sensitivity analysis typically takes the perspective of looking back to evaluate how
much of the variation in the model output is attributable to individual model inputs (e.g., Frey and
Patil 2002; Mokhtari et al. 2006; Saltelli et al. 2004).

There are many types of sensitivity analysis methods, including simple techniques that involve
changing the value of one input at a time and assessing the effect on an output, and statistical
methods that evaluate which of many simultaneously varying inputs contribute the most to the
variance of the model output. Sensitivity analysis can answer the following key questions:

0 What is the impact of changes in input values on model output?
How can variation in output values be apportioned among model inputs?
What are the ranges of inputs associated with best or worst outcomes?

What are the key controllable sources of variability?

aaaoaaQ

What are the critical limits (e.g., the emission reduction target)?
0 What are the key contributors to the output uncertainty?

Thus, sensitivity analysis can be used to inform decision making.

Iteration

There are two major types of iteration in risk assessment modeling. One is iterative refinement of
the type of analysis, perhaps starting with a relatively simple DRA as a screening step in an initial
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level of analysis and proceeding to more refined types of assessments as needed in subsequent
levels of analysis. Examples of more refined levels of assessment include application of sensitivity
analysis to DRA; the use of probabilistic methods to quantify variability only, uncertainty only, or
combined variability and uncertainty (to represent a randomly selected individual); or the use of
two-dimensional probabilistic methods for distinguishing and simultaneously characterizing both
uncertainty and variability.

The other type of iteration occurs within a particular level and includes iterative efforts to
formulate a model, obtain data and evaluate the model to prioritize data needs. For example, a
model may require a large number of input assumptions. To prioritize efforts of specifying
distributions for uncertainty and variability for model inputs, it is useful to determine which model
inputs are the most influential with respect to the assessment endpoint. Therefore, sensitivity can
be used based on preliminary assessments of ranges or distributions for each model input to
determine which inputs are the most important to the assessment. Refined efforts to characterize
distributions then can be prioritized to the most important inputs.
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4. SUMMARY AND RECOMMENDATIONS

4.1. Probabilistic Risk Analysis and Related Analyses Can Improve
the Decision-Making Process at EPA

PRA can provide useful (even critical) information about the uncertainties and variability in the
data, models, scenario, expert judgments and values incorporated in risk assessments to support
decision making across the Agency. As discussed in this paper PRA is an analytical methodology
capable of incorporating information regarding uncertainty and/or variability in risk analyses to
provide insight on the degree of certainty of a risk estimate and how the risk estimate varies within
the exposed population. Traditional approaches such as DRA, often report risks using descriptors
such as “central tendency,” “high end” (e.g., 90th percentile or above) or “maximum anticipated
exposure”. By contrast PRA can be used to describe more completely the uncertainty surrounding
such estimates, as well as to identify the key contributors to uncertainty and variability in predicted
exposures or risk estimates. This information then can be used by decision makers to weigh
alternatives, or to make decisions on whether to collect additional data, or to conduct additional
research in order to reduce the uncertainty and further characterize variability within the exposed
population. Information on uncertainties and variability in exposure and response can ultimately
improve the risk estimates.

PRA can be used to obtain insight on whether one management alternative is more likely to reduce
risks compared to another. In addition, PRA can facilitate the development of modeling scenarios
and the simultaneous consideration of multiple model alternatives. Probabilistic methods offer a
number of tools designed to increase confidence in decision making through the incorporation of
input uncertainty and variability characterization and prioritization in risk analyses. For example,
one PRA tool, sensitivity analyses can be used to identify influential knowledge gaps in the
estimation of risk; this improves transparency in the presentation of these uncertainties and
improves the ability to communicate the most relevant information more clearly to decision makers
and stakeholders. PRA allows one to investigate potential changes in decisions that could result
from the collection of additional information. However, the additional resources (e.g., time, costs,
or expertise) to undertake need to be weighed against the potential improvements in the decision
making process. Ultimately, PRA may enhance the scientific foundation of the EPA’s approach to
decision making.

The various tools and methods discussed in this white paper can be utilized at all stages of risk
analysis and also can aid the decision-making process by, for example, characterizing inter-
individual variability and uncertainties.

PRA and related methods are employed in varying degrees across the Agency. Basic guidance exists
at EPA on the use and acceptability of PRA for risk estimation, but implementation varies greatly
within programs, offices and regions .The use of Monte Carlo or other probability-based techniques
to derive a range of possible outputs from uncertain inputs is a fairly well-developed approach
within EPA. Although highly sophisticated human exposure assessment and ecological risk
applications have been developed, the use of PRA models to assess human health effects and dose-
response relationships has been more limited at the Agency.

The evaluation of the application of PRA techniques under specific laws and regulations varies by
program, office and region. Moving forward, it is important to broaden discussions between risk
assessors and risk managers regarding how PRA tools can be used to support specific decisions and
how they can be used within the regulatory framework used by programs, offices, and regions to
make decisions. This can be accomplished by expanding the dialogue between assessors and
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manages at all levels regarding how the PRA tools have been used and how they have enhanced
decision making.

Increased use of PRA and consistent application of PRA tools in support of EPA decision making
requires enhanced internal capacity for conducting these assessments, as well as improved
interpretation and communication of such information in the context of decisions. Improvements of
Agency capacity could be accomplished through sharing of experiences, knowledge and training
and increased availability of tools and methods.

4.2. Major Challenges to Using Probabilistic Risk Analysis to Support
Decisions

The challenges for EPA are two-fold. As an Agency responsible for protecting human health and the
environment, EPA makes regulatory and policy decisions, even in the presence of conflicting
stakeholder positions and the inevitable uncertainties in the science. The first challenge for EPA is
to determine how to conduct its decision-making responsibilities, weighing determinations of what
constitutes too much uncertainty to make a decision, against potential adverse consequences of
postponing decisions.

The second challenge, is that although current PRA techniques are available that would help to
inform EPA decision-making processes, research and guidance are needed to improve these
methods for a more complete implementation of PRA in HHRA and ERA. In particular, additional
guidance is needed to help analysts and decision makers better understand how to incorporate PRA
approaches into the decision-making process. This includes, guidance on which statistical tools to
use and when to use them, and how probabilistic information can help to inform the scientific basis
of decisions. Both DRA and PRA as well as appropriate statistical methods may be useful at any
stage of the risk analysis and decision-making process, from planning and scoping to characterizing
and communicating uncertainty.

O Asnoted in Section 3.3, there are significant challenges in properly accounting for
uncertainty and variability when multiple models are coupled together to represent the
source-to-outcome continuum. Moreover, the coupling of multiple models might need to
involve inputs and corresponding uncertainties that are incorporated into more than one
model, potentially resulting in complex dependencies. Integrative research on coupled
model uncertainties will be quite valuable.

O There may be mismatches in the temporal and spatial resolution of each model that
confound the ability to propagate uncertainty and variability from one model to another.
For some models, the key uncertainties may be associated with inputs, whereas for other
models, the key uncertainties may be associated with structure or parameterization
alternatives. Model integration and harmonization activities will be important to addressing
these technical issues.

4.3. Recommendations for Enhanced Utilization of Probabilistic Risk
Analysis at EPA

Some examples of areas where new or updated guidance would be helpful are these:

O Identification of different types of information required for the various Agency decision-
making processes, such as data analysis, tools, models, and use of experts.

O Use of probabilistic approaches to evaluate health effects data.

O Use of probabilistic approaches for ERA.
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O Integrating probabilistic exposure and risk estimates and communicating uncertainty and
variability.

In order to support the development of guidance on these or related topics, following studies or
research are recommended:

O The use of PRA models to evaluate toxicity data has been very limited. Scientific, technical
and policy-based discussions are needed in this area.

(O Additional research on formal methods for treating model uncertainties will be valuable.
Some steps to improve implementation include these:

O Informing decision makers about the advantages and disadvantages of using PRA
techniques in their decision-making processes through lectures, webinars and
communications regarding the techniques and their use in EPA.

a

Incorporating a discussion of PRA tools during Planning and Scoping for HHRAs and ERAs.

O Continuing the dialogue between assessors and managers on how to use PRA within the
regulatory decision making process.

O Conducting meetings and discussions of PRA techniques and their application with both
managers and assessors to aid in providing greater consistency and transparency in EPA’s
risk assessment and risk management process and in developing EPA’s internal capacity.

O Developing a “Community of Practice” for further discussion regarding the application of
PRA techniques and the use of these tools in decision making.

Risk assessors and risk managers need information and training so that they can better utilize these
tools. Education and experience will generate familiarity with these tools, which will help analysts
and decision makers better understand and consider more fully utilizing these techniques within
their regulatory programs. Increased training is needed to facilitate understanding on all levels and
may include the following:

O Providing introductory as well as advanced training to all EPA offices.

O Training risk assessors and risk managers in the PRA techniques so that they can learn
about the various tools available, their applications, software and review considerations,
and resources for additional information (e.g., experts and support services within the
Agency).

O Providing easily available, flexible, modular training for all levels of experience to
familiarize EPA employees with the menu of tools and their capacities.

O Providing live and recorded seminars and webinars for introductory and supplemental
education, as well as periodic, centralized hands-on training sessions demonstrating how to
utilize software programs.

Training is critical both for an improved understanding but also to build increased capacity in the
Agency and explicit steps could include these:

O Demonstrating, through informational opportunities and resource libraries, the various
tools and methods that can be used at all stages of risk analysis to aid the decision-making
process by characterizing inter-individual variability and uncertainties.

O Promoting the sharing of experience, knowledge, models and best practices via meetings of
risk assessors and managers; electronic exchanges, such as the EPA Portal Environmental
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Science Connector (https://ssoprod.epa.gov/sso/jsp/obloginESCNew.jsp); and more
detailed discussions of the case studies.

As EPA works toward the more integrated evaluation of environmental problems, this will include
not just the improved understanding of single pollutants/single media, but multi-pollutant, multi-
media and multi-receptor analysis within a decision analytic framework. EPA is beginning to build
such integrated capability into analytical tools like PRA (Babendreier and Castleton 2005; Stahl et
al. 2011).

The RAF will be taking a leadership role through the Uncertainty and Variability Workgroup to
more fully evaluate the application and use of PRA tools and broadening the dialogue between
assessors and managers. Updates on the progress of this Technical Panel will be provided on the
RAF webpage at: www.epa.gov/raf.
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GLOSSARY

Analysis. Examination of anything complex to understand its nature or to determine its essential
features (WHO 2004).

Assessment. A determination or appraisal of possible consequences resulting from an analysis of
data (2011b).

Assessment endpoint. An explicit expression of the environmental value that is to be protected,
operationally defined by an ecological entity and its attributes. For example, salmon are valued
ecological entities; reproduction and age class structure are some of their important attributes.
Together, salmon “reproduction and age class structure” form an assessment endpoint (USEPA
1998b).

Bayesian probability. An approach to probability, representing a personal degree of belief that a
value of random variable will be observed. Alternatively, the use of probability measures to
characterize the degree of uncertainty (Gelman et al. 2004).

Bayesian Analysis. Bayesian analysis is a method of statistical inference in which the knowledge of
prior events is used to predict future events (USEPA 2011b).

Correlation. An estimate of the degree to which two sets of variables vary together, with no
distinction between dependent and independent variables. Correlation refers to a broad class of
statistical relationships involving dependence (USEPA 2012).

Critical control point. A controllable variable that can be adjusted to reduce exposure and risk. For
example, a critical control point might be the emission rate from a particular emission source. The
concept of critical control point is from the hazard assessment and critical control point concept for
risk management that is used in space and food safety applications, among others (USEPA 2006c).

Critical limit. A numerical value of a critical control point at or below which risk is considered to be
acceptable. A criterion that separates acceptability from unacceptability (USEPA 2006c).

Deterministic. A methodology relying on point (i.e., exact) values as inputs to estimate risk; this
obviates quantitative estimates of uncertainty and variability. Results also are presented as point
values. Uncertainty and variability may be discussed qualitatively or semi-quantitatively by
multiple deterministic risk estimates (USEPA 2006Db).

Deterministic risk assessment (DRA). Risk evaluation involving the calculation and expression of
risk as a single numerical value or “single point” estimate of risk, with uncertainty and variability
discussed qualitatively (USEPA 2012).

Ecological risk assessment. The process that evaluates the likelihood that adverse ecological
effects may occur or are occurring as a result of exposure to one or more stressors (USEPA 1998b).

Ecosystem. The biotic community and abiotic environment within a specified location in space and
time (USEPA 1998b).

Ensemble. A method for predictive modeling based on multiple measures of the same event over
time (e.g., the amount of carbon dioxide present in the atmosphere at selected time points). The
collection of data input is known as an ensemble and can be used to develop a quantification of
prediction variability within the model. Ensemble modeling is used most commonly in atmospheric
prediction in forecasting, although ensemble modeling has been applied to biological systems to
better quantify risks of events or perturbations within biological systems (Fuentes and Foley 2012).

Environment. The sum of all external conditions affecting the life, development and survival of an
organism (USEPA 2010a).
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Expert elicitation. A systematic process of formalizing and quantifying, typically in probabilistic
terms, expert judgments about uncertain quantities (USEPA 2011a).

Frequentist (or frequency) probability. A view of probability that concerns itself with the
frequency with which an event occurs given a long sequence of identical and independent trials
(USEPA 1997D).

Hazard identification. The risk assessment process of determining whether exposure to a stressor
can cause an increase in the incidence or severity of a particular adverse effect, and whether an
adverse effect is likely to occur (USEPA 2012).

Human health risk assessment. 1. The process to estimate the nature and probability of adverse
health effects in humans who may be exposed to chemicals in contaminated environmental media,
now or in the future (USEPA 2010b). 2. The evaluation of scientific information on the hazardous
properties of environmental agents (hazard characterization), the dose-response relationship
(dose-response assessment), and the extent of human exposure to those agents (exposure
assessment). The product of the risk assessment is a statement regarding the probability that
populations or individuals so exposed will be harmed and to what degree (risk characterization)
(USEPA 2006a).

Inputs. Quantities that are applied to a model (WHO 2008).

Likelihood Function. An approach to modeling exposure in which long-term exposure of an
individual is simulated as the sum of separate short-term exposure events (USEPA 2001).

Microenvironment. Well-defined surroundings such as the home, office, automobile, kitchen, store,
etc., that can be treated as homogenous (or well characterized) in the concentrations of a chemical
or other agent (USEPA 1992).

Microexposure event (MEE) analysis. An approach to modeling exposure in which long-term
exposure of an individual is simulated as the sum of separate short-term exposure events (USEPA
2001).

Model. A mathematical representation of a natural system intended to mimic the behavior of the
real system, allowing description of empirical data, and predictions about untested states of the
system (USEPA 2006Db).

Model boundaries. 1. Decisions regarding the time, space, number of chemicals, etc., used in
guiding modeling of the system. Risks can be understated or overstated if the model boundary is
mis-specified. For example, if a study area is defined to be too large and includes a significant
number of low-exposure areas, then a population-level risk distribution can be diluted by including
less exposed individuals, which can, in turn, result in a risk-based decision that does not protect
sufficiently the most exposed individuals in the study area. 2. Designated areas of competence of
the model, including time, space, pathogens, pathways, exposed populations, and acceptable ranges
of values for each input and jointly among all inputs for which the model meets data quality
objectives (WHO 2008).

Modeling. Development of a mathematical or physical representation of a system or theory that
accounts for all or some of its known properties. Models often are used to test the effect of changes
of components on the overall performance of the system (USEPA 2010a).

Model uncertainty (sources of):

O  Model structure. A set of assumptions and inference options upon which a model is based,
including underlying theory as well as specific functional relationships (WHO 2008).
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O  Model detail. Level of simplicity or detail associated with the functional relationships
assumed in the model compared to the actual but unknown relationships in the system being
modeled (WHO 2008).

O  Extrapolation. Use of models outside of the parameter space used in their derivation may
result in erroneous predictions. For example, a threshold for health effects may exist at
exposure levels below those covered by a particular epidemiological study. If that study is
used in modeling health effects at those lower levels (and it is assumed that the level of
response seen in the study holds for lower levels of exposure), then disease incidence may be
overestimated (USEPA 2007a).

Monte Carlo analysis (MCA) or simulation (MCS). A repeated random sampling from the
distribution of values for each of the parameters in a generic exposure or risk equation to derive an
estimate of the distribution of exposures or risks in the population (USEPA 2006b).

One-dimensional Monte Carlo analysis (1-D MCA). A numerical method of simulating a
distribution for an endpoint of concern as a function of probability distributions that characterize
variability or uncertainty. Distributions used to characterize variability are distinguished from
distributions used to characterize uncertainty (WHO 2008).

Parameter. A quantity used to calibrate or specify a model, such as ‘parameters’ of a probability
model (e.g., mean and standard deviation for a normal distribution). Parameter values often are
selected by fitting a model to a calibration data set (WHO 2008).

Probability. A frequentist approach considers the frequency with which samples are obtained
within a specified range or for a specified category (e.g., the probability that an average individual
with a particular mean dose will develop an illness) (WHO 2008).

Probabilistic risk analysis (PRA). Calculation and expression of health risks using multiple risk
descriptors to provide the likelihood of various risk levels. Probabilistic risk results approximate a
full range of possible outcomes and the likelihood of each, which often is presented as a frequency
distribution graph, thus allowing uncertainty or variability to be expressed quantitatively (USEPA
2012).

Problem formulation. The initial stage of a risk assessment where the purpose of the assessment is
articulated, exposure and risk scenarios are considered, a conceptual model is developed, and a
plan for analyzing and characterizing risk is determined (USEPA 2004a).

Reference concentration (RfC). An estimate (with uncertainty spanning approximately an order of
magnitude) of a continuous inhalation exposure to the human population (including sensitive
subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It
can be derived from a No-Observed-Adverse-Effect Level (NOAEL), Lowest-Observed-Adverse-
Effect Level (LOAEL), or benchmark concentration, with uncertainty factors generally applied to
reflect limitations of the data used. It is generally used in EPA’s noncancer health assessments
(USEPA 2007a).

Reference dose (RfD). An estimate (with uncertainty spanning approximately an order of
magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is
likely to be without an appreciable risk of deleterious effects during a lifetime. It can be derived
from a NOAEL, LOAEL or benchmark dose, with uncertainty factors generally applied to reflect
limitations of the data used. It is typically used in EPA’s noncancer health assessments (USEPA
2011c).

Risk. 1. Risk includes consideration of exposure to the possibility of an adverse outcome, the
frequency with which one or more types of adverse outcomes may occur, and the severity or
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consequences of the adverse outcomes if such occur. 2. The potential for realization of unwanted,
adverse consequences to human life, health, property or the environment. 3. The probability of
adverse effects resulting from exposure to an environmental agent or mixture of agents. 4. The
combined answers to: What can go wrong? How likely is it? What are the consequences? (USEPA
2011c).

Risk analysis. A process for identifying, characterizing, controlling and communicating risks in
situations where an organism, system, subpopulation or population could be exposed to a hazard.
Risk analysis is a process that includes risk assessment, risk management and risk communication
(WHO 2008).

Risk assessment. 1. A process intended to calculate or estimate the risk to a given target organism,
system, subpopulation or population, including the identification of attendant uncertainties
following exposure to a particular agent, taking into account the inherent characteristics of the
agent of concern, as well as the characteristics of the specific target system (WHO 2008). 2. The
evaluation of scientific information on the hazardous properties of environmental agents (hazard
characterization), the dose-response relationship (dose-response assessment), and the extent of
human exposure to those agents (exposure assessment) (NRC 1983). The product of the risk
assessment is a statement regarding the probability that populations or individuals so exposed will
be harmed and to what degree (risk characterization; USEPA 2000a). 3. Qualitative and quantitative
evaluation of the risk posed to human health or the environment by the actual or potential presence
or use of specific pollutants (USEPA 2012).

Risk-based decision making. A process through which decisions are made according to the risk
each posed to human health and the environment (USEPA 2012).

Risk management. A decision-making process that takes into account environmental laws;
regulations; and political, social, economic, engineering and scientific information, including a risk
assessment, to weigh policy alternatives associated with a hazard (USEPA 2011c).

Scenario. A set of facts, assumptions and inferences about how exposure takes place that aids the
exposure assessor in evaluating, estimating or quantifying exposures (USEPA 1992). Scenarios
might include identification of pollutants, pathways, exposure routes and modes of action, among
others.

Sensitivity analysis. The process of changing one variable while leaving the others constant to
determine its effect on the output. This procedure fixes each uncertain quantity at its credible lower
and upper bounds (holding all others at their nominal values, such as medians) and computes the
results of each combination of values. The results help to identify the variables that have the
greatest effect on exposure estimates and help focus further information-gathering efforts (USEPA
2011b).

Tiered approach. Refers to various hierarchical tiers (levels) of complexity and refinement for
different types of modeling approaches that can be used in risk assessment. A deterministic risk
assessment with conservative assumptions is an example of a lower level type of analysis (Tier 0)
that can be used to determine whether exposures and risks are below levels of concern. Examples
of progressively higher levels include the use of deterministic risk assessment coupled with
sensitivity analysis (Tier 1), the use of probabilistic techniques to characterize either variability or
uncertainty only (Tier 2), and the use of two-dimensional probabilistic techniques to distinguish
between but simultaneously characterize both variability and uncertainty (Tier 3) (USEPA 2004a
and WHO 2008).

Two-dimensional Monte Carlo analysis (2-D MCA). An advanced numerical modeling technique
that uses two stages of random sampling, also called nested loops, to distinguish between
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variability and uncertainty in exposure and toxicity variables. The first stage, often called the inner
loop, involves a complete 1-D MCA simulation of variability in risk. In the second stage, often called
the outer loop, parameters of the probability distributions are redefined to reflect uncertainty.
These loops are repeated many times resulting in multiple risk distributions, from which
confidence intervals are calculated to represent uncertainty in the population distribution of risk
(WHO 2008).

Uncertainty. Uncertainty occurs because of a lack of knowledge. It is not the same as variability.
For example, a risk assessor may be very certain that different people drink different amounts of
water but may be uncertain about how much variability there is in water intakes within the
population. Uncertainty often can be reduced by collecting more and better data, whereas
variability is an inherent property of the population being evaluated. Variability can be better
characterized with more data but it cannot be reduced or eliminated. Efforts to clearly distinguish
between variability and uncertainty are important for both risk assessment and risk
characterization, although they both may be incorporated into an assessment (USEPA 2011c).

Uncertainty analysis. A detailed examination of the systematic and random errors of a
measurement or estimate; an analytical process to provide information regarding uncertainty
(USEPA 2006b).

Value of information. An analysis that involves estimating the value that new information can have
to a risk manager before the information is actually obtained. It is a measure of the importance of
uncertainty in terms of the expected improvement in a risk management decision that might come
from better information (USEPA 2001).

Variability. Refers to true heterogeneity or diversity, as exemplified in natural variation. For
example, among a population that drinks water from the same source and with the same
contaminant concentration, the risks from consuming the water may vary. This may result from
differences in exposure (e.g., different people drinking different amounts of water and having
different body weights, exposure frequencies and exposure durations), as well as differences in
response (e.g., genetic differences in resistance to a chemical dose). Those inherent differences are
referred to as variability. Differences among individuals in a population are referred to as inter-
individual variability, and differences for one individual over time are referred to as intra-
individual variability (USEPA 2011c).
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A.OVERVIEW

This Appendix focuses on examples of how probabilistic risk analysis (PRA) approaches have been
used at EPA to inform regulatory decisions. The Appendix was prepared by representatives from
various EPA program offices and regions currently involved in the development and application of
PRA techniques. The Technical Panel selected the case study examples based on the members’
knowledge of the specific PRA procedures, the types of techniques demonstrated, the availability to
the reader through the Internet and the condition of having been peer reviewed; they also were
selected to be illustrative of a spectrum of PRA used at EPA. The case studies are not designed to
provide an exhaustive discussion of the wide variety of applications of PRA used within the Agency,
but to highlight specific examples reflecting the range of approaches currently applied within EPA.

This Appendix is intended to serve as a resource for managers faced with decisions regarding when
to apply PRA techniques to inform environmental decisions, and for exposure and risk assessors
who may not be familiar with the wide variety of available PRA approaches. The document outlines
categories of PRAs classified by the complexity of analysis to aid the decision-making process. This
approach identifies various PRA tools, which include techniques ranging from a simple sensitivity
analysis (e.g., identification of key exposure parameters or data visualization) requiring limited
time, resources and expertise to develop (Group 1); to probabilistic approaches, including Monte
Carlo analysis, that provide tools for evaluating variability and uncertainty separately and that
require more resources and specialized expertise (Group 2); to sophisticated techniques of expert
elicitation that generally require significant investment of employee time, additional expertise and
external peer review (Group 3).

The case studies in this Appendix used PRA techniques within this ranked framework to provide
additional information for managers. The case study summaries are provided in a format designed
to highlight how the results of the PRAs were considered in decision making. These summaries
include specific information on the conduct of the analyses as an aid in determining what tools
might be appropriate to develop specific exposure or risk assessments for other sites.

The case studies range from examples of less resource-intensive analyses, which might assist in
identifying key exposure parameters or the need for more data, to more detailed and resource-
intensive approaches. Examples of applications in human health and ecological risk assessment
include the exposure of children to chromated copper arsenate (CCA)-treated wood, the relation
between particulates in air and health, dietary exposures to pesticides, modeling sea level change,
sampling watersheds, and modeling bird and animal exposures.

B.INTRODUCTION

Historically, EPA has used deterministic risk assessments, or point estimates of risk, to evaluate
cancer risks and noncancer health hazards to high-end exposed individuals (90th percentile or
higher) and the average exposed individual (50th percentile) and, where appropriate, risks and
hazards to populations, as required by specific environmental laws (USEPA 1992a). The use of
default values for exposure parameters in risk assessments provides a procedural consistency that
allows risk assessments to be feasible and tractable (USEPA 2004). The methods typically used in
EPA deterministic risk assessments (DRA) rely on a combination of point values—some
conservative and some typical—yielding a point estimate of exposure that is at some unknown point
in the range of possible risks (USEPA 2004).

This Appendix presents case studies of PRA conducted by EPA over the past 10 to 15 years.
Table A-1 summarizes the case studies by title, technique demonstrated, classification as a human
health risk assessment (HHRA) or ecological risk assessment (ERA), and the program or regional
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office responsible for developing the case studies. This Appendix, provides a “snapshot” of the
utilization of PRA across various programs in EPA.

C.OVERALL APPROACH TO PROBABILISTIC RISK
ANALYSIS AT THE U.S. ENVIRONMENTAL PROTECTION
AGENCY

C.1. U.S. Environmental Protection Agency Guidance and Policies on
Probabilistic Risk Analysis

The case studies presented here build on the principles of PRA outlined in EPA’s 1997 Policy for Use
of Probabilistic Analysis in Risk Assessment at the U.S. Environmental Protection Agency (USEPA
1997a) and Guiding Principles for Monte Carlo Analysis (USEPA 1997b), as well as subsequent
guidance documents on developing and using PRA. Guidance has been developed for the Agency
and individual programs. Specific documents that refer to the use of PRA include the Risk
Assessment Guidance for Superfund: Volume 111 (USEPA 2001); Risk Assessment Forum (RAF)
Framework for Ecological Risk Assessment (USEPA 1992b); Guidelines for Ecological Risk Assessment
(USEPA 1998); Guidance for Risk Characterization (USEPA 1995a); Policy on Evaluating Health Risks
to Children (USEPA 1995b); Policy for Use of Probabilistic Analysis in Risk Assessment (USEPA
1997a); Guidance on Cumulative Risk Assessment, Part 1: Planning and Scoping (USEPA 1997c); and
Risk Characterization Handbook (USEPA 2000a); and Framework for Human Health Risk Assessment
to Inform Decision Making (USEPA 2014).

As shown in the individual case studies, the range and scope of the PRA will depend on the overall
objectives of the decision that the analysis will inform. The Guiding Principles for Monte Carlo
Analysis (USEPA 1997D) lay out the general approach that should be taken in all cases, beginning
with defining the problem and scope of the assessment to selecting the best tools and approach.
The Guiding Principles also describe the process of estimating and characterizing variability and
uncertainty around risk estimates. Stahl and Cimorelli (2005) and the Risk Assessment Guidance for
Superfund: Volume III (USEPA 2001) highlight the importance of communication between the risk
assessor and manager. Stahl and Cimorelli (2005) and Jamieson (1996) indicate that it is important
to determine whether a particular level of uncertainty is acceptable or not. The authors also suggest
that this decision depends on context, values and regulatory policy. The Risk Assessment Guidance
for Superfund: Volume 111 (Chapter 2 and Appendix F in USEPA 2001) describes a process for
determining the appropriate level of PRA using a ranked approach from the less resource- and
time-intensive approaches to more sophisticated analyses. Furthermore, the Risk Assessment
Guidance for Superfund: Volume III outlines a process for developing a PRA work plan and a
checklist for PRA reviewers (Chapter 2 and Appendix F in USEPA 2001). This guidance also
provides information regarding how to communicate PRA results to decision makers and
stakeholders (Chapter 6 in USEPA 2001).

C.2. Categorizing Case Studies

The ranked approach used for categorization is a process for a systematic, informed progression to
increasingly complex risk assessment methods of PRA, which is outlined in the Risk Assessment
Guidance for Superfund (USEPA 2001). The use of categories provides a framework for evaluating
the various techniques of PRA. Higher categories reflect increasing complexity and often will
require more time and resources. Higher categories also reflect increasing characterization of
variability and uncertainty in the risk estimate, which may be important for making specific risk
management decisions. Central to the approach is a systematic, informed progression using an
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iterative process of evaluation, deliberation, data collection, planning and scoping, development,
and updates to the work plan and communication. All of these steps focus on deciding:

1. Whether or not the risk assessment, in its current state (e.g., DRA) is sufficient to support
decisions (i.e., a clear path to exiting the process is available at each step).

2. Ifthe assessment is determined to be insufficient, whether or not progression to a higher
level of complexity (or refinement of the current analyses) would provide a sufficient
benefit to warrant the additional effort of performing a PRA.

This Appendix groups case studies according to level of effort and complexity of the analysis and
the increasing sophistication of the methods used (Table A-1). Although each group generally
represents increasing effort and cost, this may not always be true. The groups also are intended to
reflect the progression from simple to complex analysis that is determined by the interactive
planning and scoping efforts of the risk assessors and managers. The use of particular terms to
describe the groups, including “tiers,” was avoided due to specific programmatic and regulatory
connotations.

Group 1 Case Studies

Assessments within this group typically involve a sensitivity analysis and serve as an initial
screening step in the risk assessment. Sensitivity analyses identify important parameters in the
assessment where additional investigation may be helpful (Kurowicka and Cooke 2006). Sensitivity
analysis can be simple or involve more complex mathematical and statistical techniques, such as
correlation and regression analysis, to determine which factors in a risk model contribute most to
the variance in the risk estimate.

Within the sensitivity analyses, a range of techniques is available: simple, “back-of-the-envelope”
calculations, where the risk parameters are evaluated using a range of exposure parameters to
determine the parameter that contributes most significantly to the risk (Case Study 1); analyses to
rank the relative contributions of variables to the overall risk (Case Study 2); and data visualization
using graphical techniques to array the data or Monte Carlo simulations (e.g., scatter plots).

More sophisticated analyses may include sensitivity ratios (e.g., elasticity); sensitivity scores (e.g.,
weighted sensitivity ratios); correlation coefficient or coefficient of determination; r? (e.g., Pearson
product moment, Spearman rank); normalized multiple regression coefficients; and goodness-of-fit
tests for subsets of the risk distribution (USEPA 2001).

The sensitivity analyses typically require minimal resources and time. Results of the sensitivity
analyses are useful in identifying key parameters where additional Group 2 or Group 3 analyses
may be appropriate. Sensitivity analyses also are helpful in identifying key parameters where
additional research will have the highest impact on the risk assessment.

Group 2 Case Studies

Case studies within this group include a more sophisticated application of probabilistic tools,
including PRA of specific exposure parameters (Case Studies 3 and 4), one-dimensional analyses
(Case Study 5) and probabilistic sensitivity analysis (Case Studies 6 and 7).

The Group 2 case studies require larger time commitments for development, specialized expertise
and additional analysis of exposure parameter data sources. Depending on the nature of the
analysis, peer involvement or peer review may be appropriate to evaluate the products of the
analysis.
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Group 3 Case Studies

Assessments within this group are the most resource- and time-intensive analyses of the three
categories. Risk analyses include two-dimensional Monte Carlo analysis (2-D MCA) that evaluates
model variability and uncertainty (Case Studies 8, 9 and 10); microexposure event analysis (MEE),
in which long-term exposure of an individual is simulated as the sum of separate short-term
exposure events (Case Study 11); and probabilistic analysis (Case Studies 12 and 13).

Other types of analyses within this group include the expert elicitation method that is a systematic
process of formalizing and quantifying, in terms of probabilities, experts’ judgments about
uncertain quantities (Case Studies 14 and 15); Bayesian statistics, which is a specialized branch of
statistics that views the probability of an event occurring as the degree of belief or confidence in
that occurrence (Case Study 16); and geostatistical analysis, which is another specialized branch of
statistics that explicitly takes into account the geo-referenced context of the data and the
information (e.g., attributes) attached to the data.

The Group 3 analyses require additional time and expertise in the planning and analysis of the
assessment. Within this group, the level of expertise and resource commitments may vary with the
techniques. Expert elicitation, for example, requires significantly more time for planning,
identification of experts and meetings, when compared with the other techniques.
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Table A-1

. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk

Assessment Techniques

G ELTL] Title and Case Study Description e @il Office/Region
Number Assessment
Group 1: Point Estimate—Sensitivity Analysis

Sensitivity Analysis of Key Variables in Probabilistic ]
Assessment of Children’s Exposure to Arsenic in Office of
Chromated Copper Arsenate (CCA) Pressure-Treated Research and
Wood. This case study demonstrates use of a point estimate Development

1 sensitivity analysis to identify exposure variables criical to | Human Health | (CRP)and
the analysis summarized in Case Study 9. The sensitivity Office of
analysis identified critical areas for future research and data Pesticide
collection and better characterized the amount of Programs
dislodgeable residue that exists on the wood surface. (OPP)
Assessment of the Relative Contribution of Atmospheric
Deposition to Watershed Contamination. An example of a
workbook that demonstrates how “back-of-the-envelope”
analysis of potential exposure rates can be used to target

9 resources to identify other inputs before further analysis of air Ecological ORD

inputs in watershed contamination. Identification of key
variables aided in identifying uncertainties and data gaps to
target resource expenditures for further analysis. A case
study example of the application of this technique also is
identified.

Group 2: Probabilistic Risk Analysis, One-Dimensional Monte Carlo Analysis (1-D MCA) and

Probabilistic Sensitivity Analysis

Group 2: Probabilistic Risk Analysis

Probabilistic Assessment of Angling Duration Used in
the Assessment of Exposure to Hudson River Sediments
via Consumption of Contaminated Fish. A probabilistic
analysis of one parameter in an exposure assessment—the
time an individual fishes in a large river system. Development
of site-specific information regarding exposure, with an
existing data set for this geographic area, was needed to
represent this exposed population. This information was used
in the one-dimensional PRA described in Case Study 5.

Human Health

Superfund/
Region 2
(New York)

Probabilistic Analysis of Dietary Exposure to Pesticides
for Use in Setting Tolerance Levels. The probabilistic
Dietary Exposure Evaluation Model (DEEM) provides more
accurate information on the range and probability of possible
exposures.

Human Health

OPP
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Table A-1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk

Assessment Techniques

Case Study
Number

Title and Case Study Description

Type of Risk
Assessment

Office/Region

Group 2: One-Dimensional Monte Carlo Analysis (1-D MCA)

One-Dimensional Probabilistic Risk Analysis of
Exposures to Polychlorinated Biphenyls (PCBs) via
Consumption of Fish From a Contaminated Sediment
Site. An example of a one-dimensional PRA (1-D MCA) of
the variability of exposure as a function of the variability of
individual exposure factors to evaluate the risks to anglers
who consume recreationally caught fish from a PCB-
contaminated river.

Human Health

Superfund/
Region 2
(New York)

Group 2: Probabilistic Sensitivity Analysi

S

Probabilistic Sensitivity Analysis of Knowledge
Elicitation of the Concentration-Response Relationship
Between PM s Exposure and Mortality. An example of how
the probabilistic analysis tools can be used to conduct a
probabilistic sensitivity analysis following an expert elicitation
(Group 3) presented in Case Study 14.

Human Health

Office of Air
and Radiation
(OAR)

Environmental Monitoring and Assessment Program
(EMAP): Using Probabilistic Sampling Techniques to
Evaluate the Nation’s Ecological Resources. A probability-
based sampling program designed to provide unbiased
estimates of the condition of an aquatic resource over a large
geographic area based on a small number of samples.

Ecological

ORD

Group 3: Advanced Probabilistic Risk Analysis— Two-Dimensional Monte Carlo Analysis (2-D MCA)
Including Microexposure Modeling, Bayesian Statistics, Geostatistics and Expert Elicitation

Group 3: Two-Dimensional Probabilistic Risk Analysis

Two-Dimensional Probabilistic Risk Analysis of
Cryptosporidium in Public Water Supplies, With
Bayesian Approaches to Uncertainty Analysis. An
analysis of the variability in the occurrence of
Cryptosporidium in raw water supplies and in the treatment
efficiency, as well as the uncertainty in these inputs. This
case study includes an analysis of the dose-response
relationship for Cryptosporidium infection.

Human Health

Office of
Water (OW)

Two-Dimensional Probabilistic Model of Children’s
Exposure to Arsenic in Chromated Copper Arsenate
(CCA) Pressure-Treated Wood. A two-dimensional model
that addresses both variability and uncertainty in the
exposures of children to CCA pressure-treated wood. The
analysis was built on the sensitivity analysis described in

Case Study 2.

Human Health

OPP/ORD

60




Table A-1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk

Assessment Techniques

Case Study
Number

Title and Case Study Description

Type of Risk
Assessment

Office/Region

10

Two-Dimensional Probabilistic Exposure Assessment of
Ozone. A probabilistic exposure assessment that addresses
short-term exposures to ozone. Population exposure to
ambient ozone levels was evaluated using EPA’s Air
Pollutants Exposure (APEX) model, also referred to as the
Total Risk Integrated Methodology/Exposure (TRIM.Expo)
model.

Human Health

OAR

Group 3: Microexposure Event Analysis

11

Analysis of Microenvironmental Exposures to Fine
Particulate Matter (PM.s) for a Population Living in
Philadelphia, Pennsylvania. A microexposure event
analysis to simulate individual exposures to PM. s in specific
microenvironments, including the outdoors, indoor
residences, offices, schools, stores and a vehicle.

Human Health

Region 3
(Philadelphia)
and ORD

Group 3: Probabilistic Analysis

12

Probabilistic Analysis in Cumulative Risk Assessment of
Organophosphorus Pesticides. A probabilistic computer
software program used to integrate various pathways, while
simultaneously incorporating the time dimensions of the input
data to calculate margins of exposure.

Human Health

OPP

13

Probabilistic Ecological Effects Risk Assessment Models
for Evaluating Pesticide Uses. A multimedia exposure/
effects model that evaluates acute mortality levels in generic
or specific avian species over a user-defined exposure
window.

Ecological

OPP

Group 3: Expert Elicitation and Bayesian Belief Network

14

Expert Elicitation of Concentration-Response
Relationship Between Fine Particulate Matter (PM..)
Exposure and Mortality. A knowledge elicitation used to
derive probabilistic estimates of the uncertainty in one
element of a cost-benefit analysis used to support the PMzs
regulations.

Human Health

ORD/
OAR

15

Expert Elicitation of Sea-Level Change Resulting From
Global Climate Change. An example of a PRA that
describes the probability of sea level rise and parameters
that predict sea level change.

Ecological

Office of
Policy,
Planning, and
Evaluation
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Table A-1. Case Study Examples of EPA Applications of Deterministic and Probabilistic Risk

Assessment Techniques

Case Study

Type of Risk

R Title and Case Study Description Assessment Office/Region
Knowledge Elicitation for Bayesian Belief Network Model
16 of Stream Ecology. An example of a Bayesian belief Ecological ORD

network model of the effect of increased fine-sediment load
in a stream on macroinvertebrate populations.
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D.CASE STUDY SUMMARIES
D.1. Group 1 Case Studies

Case Study 1: Sensitivity Analysis of Key Variables in Probabilistic
Assessment of Children’s Exposure to Arsenic in Chromated Copper
Arsenate Pressure-Treated Wood

This case study provides an example of the application of sensitivity analysis to identify important
variables for population exposure variability for a Group 2 assessment (Case Study 9) and to
indicate areas for further research. Specifically, EPA’s Office of Research and Development (ORD), in
collaboration with the Office of Pesticide Programs (OPP), used sensitivity analyses to identify the
key variables in children’s exposure to CCA-treated wood.

Approach. The sensitivity analyses used two approaches. The first approach estimated baseline
exposure by running the exposure model with each input variable set to its median (50th
percentile) value. Next, alternative exposure estimates were made by setting each input to its 25th
or 75th percentile value while holding all other inputs at their median values. The ratio of the
exposure estimate calculated when an input was estimated at its 25th or 75th percentile to the
exposure estimate calculated when the input was at its median value provided a measure of that
input’s importance to the overall exposure assessment. The second approach applied a multiple
stepwise regression analysis to the data points generated from the first approach. The correlation
between the input variables and the exposure estimates provided an alternative measure of the
input variable’s relative importance in the exposure assessment. These two approaches were used
in tandem to identify the critical inputs to the exposure assessment model.

Results of Analysis. The two sensitivity analyses together identified six critical input variables that
most influenced the exposure assessment. The critical input variables were: wood surface residue-
to-skin transfer efficiency, wood surface residue levels, fraction of hand surface area mouthed per
mouthing event, average fraction of nonresidential outdoor time spent playing on a CCA-treated
playset, frequency of hand washing and frequency of hand-to-mouth activity.

Management Considerations. The results of the sensitivity analyses were used to identify the
most important input parameters in the treated wood risk assessments. The process also identified
critical areas for future research. In particular, the assessment pointed to a need to collect data on
the amount of dislodgeable residue that is transferred from the wood surface to a child’s hand upon
contact, and to better characterize the amount of dislodgeable residue that exists on the wood
surface.

Selected References. The final report on the probabilistic exposure assessment of CCA-treated
wood:

Zartarian, V. G., ]. Xue, H. A. Ozkaynak, W. Dang, G. Glen, L. Smith, and C. Stallings. A Probabilistic
Exposure Assessment for Children Who Contact CCA-Treated Playsets and Decks Using the Stochastic
Human Exposure and Dose Simulation Model for the Wood Preservative Scenario (SHEDS-WO0OD),
Final Report. EPA/600/X-05/009. Washington, D.C.: USEPA.

See also: Xue, J., V. G. Zartarian, H. Ozkaynak, W. Dang, G. Glen, L. Smith, and C. Stallings. 2006. “A
Probabilistic Exposure Assessment for Children Who Contact Chromated Copper Arsenate (CCA)-
Treated Playsets and Decks, Part 2: Sensitivity and Uncertainty Analyses.” Risk Analysis 26:533-41.
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Case Study 2: Assessment of the Relative Contribution of
Atmospheric Deposition to Watershed Contamination

Watershed contamination can result from several different sources, including the direct release of
pollution into a water body, input from upstream water bodies and deposition from airborne
sources. Efforts to control water body contamination begin with an analysis of the environmental
sources to identify the parameters that provide the greatest contribution and determine where
mitigation and/or analysis resources should be directed.

Approach. This case study provides an example of a “back-of-the-envelope” deterministic analysis
of the contribution of air deposition to overall watershed nitrogen? Nutrient? contamination to
identify uncertainties and/or data gaps, as well as to target resource expenditures. Nitrogen inputs
have been studied in several east and Gulf Coast estuaries due to concerns about eutrophication.
Nitrogen from atmospheric deposition is estimated to be as high as 10 to 40 percent of the total
input of nitrogen to many of these estuaries, and perhaps higher in a few cases. For a watershed
that has not been studied yet, a back-of-the-envelope calculation could be prepared based on
information about the nitrogen deposition rates measured in a similar area. To estimate the
deposition load directly to the water body, one would multiply the nitrogen deposition rate by the
area of the water body. The analyst then could estimate the nitrogen load from other sources (e.g.,
point source discharges and runoff) to estimate a total nitrogen load for the water body. The
estimate of loading due to atmospheric deposition then could be divided by the total nitrogen load
for the water body to estimate the percent of contribution directly to the water body from
atmospheric deposition.

The May 2003 report by the Casco Bay Air Deposition Study Team titled Estimating Pollutant
Loading From Atmospheric Deposition Using Casco Bay, Maine as a Case Study is an analysis using the
methodology described above. The Casco Bay Estuary, located in southwestern Maine, is used as a
case study. The paper also includes the results of a field air deposition monitoring program
conducted in Casco Bay from 1998 to 2000 and favorably compares the estimates developed for the
rate of deposition of nitrogen, mercury and polycyclic aromatic hydrocarbons (PAHs) to the field
monitoring results. The estimation approach is a useful starting point for understanding the
sources of pollutants entering water bodies that cannot be accounted for through runoff or point
source discharges.

Results of Analysis. The approach outlined above was applied to the Casco Bay Estuary in Maine.
Resources, tools and strategies for pollution abatement can be effectively targeted at priority
sources if estuaries are to be protected. Understanding the sources and annual loading of
contaminants to an estuary facilitates good water quality management by defining the range of
controls of both air and water pollution needed to achieve a desired result. The cost of conducting
monitoring to determine atmospheric loading to a water body can be prohibitively high. Also,
collection of monitoring data is a long-term undertaking because a minimum of 3 years of data is
advisable to “smooth out” inter-annual variability. The estimation techniques described in this
paper can serve as a useful and inexpensive “first-cut” at understanding the importance of the
atmosphere as a pollution source and can help to identify areas where field measurements are
needed to guide future management decisions.

Management Considerations. If a review of information on air deposition available for the
analysis indicates a wide range of potential deposition rates, further study of this input would lead
to better characterization of the air contribution to overall contamination. If the back-of-the
envelope analysis suggests that air deposition is very small relative to other inputs, then resources
should be targeted at studying or reducing other inputs before proceeding with further analysis of
the air inputs.
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Selected References. The back-of-the-envelope calculation is outlined in Frequently Asked
Questions about Atmospheric Deposition: A Handbook for Watershed Managers.
http://www.epa.gov/air/oagps/gr8water/handbook/airdep sept.pdf.

Further analysis is available in Deposition of Air Pollutants to the Great Waters—Third Report to
Congress. http://www.epa.gov/air/oaqps/gr8water/3rdrpt/index.html.

The Casco Bay Estuary example is available at http://epa.gov/owow/airdeposition/cascobay.pdf.

D.2. Group 2 Case Studies

Case Study 3: Probabilistic Assessment of Angling Duration Used in
the Assessment of Exposure to Hudson River Sediments via
Consumption of Contaminated Fish

In assessing the health impact of contaminated Superfund sites, exposure duration typically is
assumed to be the same as the length of time that an individual lives in a specific area

(i.e., residence duration). In conducting the HHRA for the Hudson River Polychlorinated Biphenyl
(PCB) Superfund Site, however, there was concern that exposure duration based on residence
duration may underestimate the time spent fishing (i.e., angling duration).

Risk Analysis. An individual may move from one residence to another and continue to fish in the
same location, or an individual may choose to stop fishing irrespective of the location of his or her
home. EPA Region 2 developed a site-specific distribution of angling duration using the fishing
patterns reported in a New York State-wide angling survey (Connelly et al. 1990) and migration
data for the five counties surrounding more than 40 miles of the Upper Hudson River collected as
part of the U.S. Census.

Results of Analysis. The 50th and 95th percentile values from the distribution of angling durations
were higher than the default values based on residence duration using standard default exposure
assumptions for residential scenarios. These values were used as a base for the central tendency
and reasonable maximum exposure point estimates, respectively, in the deterministic assessment.

Management Considerations. The information provided in this analysis was used in the point
estimate analysis. The full distribution was used in conducting a Group 2 PRA for the fish
consumption pathway, which is presented as Case Study 5.

Selected References. The final risk assessment was released in November 2000 and is available at
http://www.epa.gov/hudson/reports.htm.

Further information, including EPA’s January 2002 response to comments on the risk assessment,
is available at http://www.epa.gov/hudson/ResponsivenessSummary.pdf.

Case Study 4: Probabilistic Analysis of Dietary Exposure to
Pesticides for Use in Setting Tolerance Levels

Under the Federal Food, Drug, and Cosmetic Act (FFDCA), EPA may authorize a tolerance or
exemption from the requirement of a tolerance to allow a pesticide residue in food, only if the
Agency determines that such residues would be “safe.” This determination is made by estimating
exposure to the pesticide and comparing the estimated exposure to a toxicological benchmark dose.
Until 1998, the OPP used a software program called the Dietary Risk Evaluation System (DRES) to
conduct its acute dietary risk assessments for pesticide residues in foods. Acute assessments
conducted with DRES assumed that 100 percent of a given crop with registered use of a pesticide

65



was treated with that pesticide and all such treated crop items contained pesticide residues at the
maximum legal (tolerance) level, matching this to a reasonably high consumption value (around the
95th percentile). The resulting DRES acute risk estimates were considered “high-end” or
“bounding” estimates. It was not possible, however, to know where the pesticide exposure
estimates from the DRES software fit in the overall distribution of exposures due to the limits of the
tools being used.

To address these deficiencies, OPP developed an acute probabilistic dietary exposure guidance to
use a model that would estimate the exposure to pesticides in the food supply. Rather than the
crude “high-end,” single-point estimates provided by deterministic assessments, the probabilistic
Dietary Exposure Evaluation Model (DEEM) provides specific information about the range and
probability of possible exposures. Depending on the characterization of the input, this could include
the 95th percentile regulation—generally for lower tiers that do not include the percent of crop
treated—to the 99.9th percentile for the more refined assessments, which would include the
percent of crop treated information.

Probabilistic Analysis. This case study provides an example of a one-dimensional PRA of dietary
exposure to pesticides (Group 2). The DEEM generates acute, probabilistic dietary exposure
assessments using data on: (1) the distribution of daily consumption of specific commodities (e.g.,
wheat, corn and apples) by specific individuals; and (2) the distribution of concentrations of a
specific pesticide in those food commodities. Data on commodity consumption are collected by the
U.S. Department of Agriculture (USDA) in its Continuing Survey of Food Intake by Individuals
(CSFII). Pesticide residue concentrations on food commodities are generally obtained from crop
field trials, USDA’s Pesticide Data Program (PDP), U.S. Food and Drug Administration (FDA)
monitoring data, or market basket surveys. Using these data, DEEM is able to calculate an estimate
of the risk to the general U.S. population, in addition to 26 population subgroups, including 5
subgroups for infants and children (infants less than 1, children 1 to 2, children 3 to 5, youths 6 to
12 and teens 13 to 19 years of age).

Results of Analysis. DEEM has been used in risk assessments to support tolerance levels for
several pesticides (e.g., phosalone) and as part of cumulative risk assessments for
organophosphorus compounds (see Case Study 12) and other pesticides.

Management Considerations. Using the DRES, decisions were being made without a complete
representation of the distribution of risk among the population and without full knowledge of
where in the distribution of risk the DRES risk estimate lay. This was of concern not only for
regulators interested in public health protection, but also for the pesticide registrants who could
argue that the Agency was arbitrarily selecting the level at which to regulate. For most cases
reviewed by OPP to date, estimated exposure at the 99.9th percentile calculated by DEEM
probabilistic techniques is significantly lower than exposure calculated using DRES-type
deterministic assumptions at the unknown percentile.

Selected References. A link to the DEEM model is available at
http: //www.epa.gov/pesticides/science/deem/index.html.

Case Study 5: One-Dimensional Probabilistic Risk Analysis of
Exposure to Polychlorinated Biphenyls via Consumption of Fish From
a Contaminated Sediment Site

EPA Region 2 conducted a preliminary deterministic HHRA at the Hudson River PCBs Superfund
site. The DRA demonstrated that consumption of recreationally caught fish provided the highest
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exposure among relevant exposure pathways, which resulted in cancer risks and noncancer health
hazards that exceeded regulatory benchmarks.

Probabilistic Analysis. Because of the size, complexity and high level of public interest in this site,
EPA Region 2 implemented a Group 2 probabilistic assessment to characterize the variability in
risks associated with the fish consumption exposure pathway. The analysis was a one-dimensional
Monte Carlo analysis (1-D MCA) of the variability of exposure as a function of the variability of
individual exposure factors. Uncertainty was assessed using sensitivity analysis of the input
variables. Data to characterize the distributions of exposure parameters were drawn from the
published literature (e.g., fish consumption rate) or from existing databases, such as the U.S. Census
data (e.g., angling duration, see Case Study 3). Mathematical models of the environmental fate,
transport and bioaccumulation of PCBs in the Hudson River previously developed were used to
forecast changes in PCB concentration over time.

Results of Analysis. The results of the PRA were consistent with the deterministic results. For the
central tendency individual, point estimates were near the median (50th percentile). For the
reasonable maximum exposure (RME) individual, point estimate values were at or above the 95th
percentile of the probabilistic analysis. The DRA and PRA were the subject of a formal peer review
by a panel of independent experts.

The Monte Carlo-based case scenario is the one from which point estimate exposure factors for fish
ingestion were drawn; thus, the point estimate RMEs and the Monte Carlo-based case estimates can
be compared. Similarly, the point estimate central tendency (average) and the Monte Carlo-based
case midpoint (50th percentile) are comparable. For cancer risk, the point estimate RME for fish
ingestion (1 x 10-3) falls approximately at the 95th percentile from the Monte Carlo-based case
analysis. The point estimate central tendency value (3 x 10-5) and the Monte Carlo-based case 50th
percentile value (6 x 10-5) are similar. For noncancer health hazards, the point estimate RME for
fish ingestion (104 for a young child 1 to 6 years of age) falls between the 95th and 99th percentiles
of the Monte Carlo-based case. The point estimate central tendency hazard index (HI; 12 for a
young child) is approximately equal to the 50th percentile of the Monte Carlo-based case Hl of 11.

Figures A-1 and A-2 provide a comparison of results from the probabilistic analysis with that of the
DRA for cancer risks and noncancer health hazards. Figures A-1 and A-2 plot percentiles for 72
combinations of exposure variables (e.g., distributions from creel angler surveys’ residence
duration, fishing locations and cooking losses) of the noncancer HI values and the cancer risks,
respectively. In each of these figures, the variability of cancer risk or noncancer Hls for anglers
within the exposed population is plotted on the y-axis for particular percentiles within the
population. This variability is a function of the variations in fish consumption rates, fishing
duration, differences in fish species ingested and so forth. The uncertainty in the estimates is
indicated by the range of either cancer risk or noncancer HI values plotted on the x-axis. This
uncertainty is a function of the 72 combinations of the exposure factor inputs examined in the
sensitivity analysis. This analysis provides a semi-quantitative confidence interval for the cancer
risks and HI values at any particulate percentile. As these figures show, the intervals span
somewhat less than two orders of magnitude (e.g., < 100-fold). The vertical lines indicate the
deterministic endpoints.

Management Considerations. Early and continued involvement of the community improved
public acceptance of the results. In addition, careful consideration of the methods used to present
the probabilistic results to the public lead to greater understanding of the findings.

Selected References. The final risk assessment was released in November 2000 and is available at
http://www.epa.gov/hudson/reports.htm.
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Further information, including EPA’s January 2002 response to comments on the risk assessment,

is available at http://www.epa.gov/hudson/ResponsivenessSummary.pdf.

Fraction
of Anglers
With
Risk <
Indicated
Value

Figure A-1. Monte Carlo Cancer Summary Based on a One-Dimensional Probabilistic Risk Analysis of
Exposure to Polychlorinated Biphenyls. The estimated cancer rate was calculated based on the
consumption of fish from a contaminated sediment site. Source: USEPA 2000b.

Fraction
of Anglers
With
Hl <
Indicated
Value

Figure A-2. Monte Carlo Noncancer Hazard Index Summary Based on a One-Dimensional Probabilistic
Risk Analysis of Exposure to Polychlorinated Biphenyls. The incremental individual hazard index (HI)
was calculated based on the consumption of fish from a contaminated sediment site. Source: USEPA
2000b.
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Case Study 6: Probabilistic Sensitivity Analysis of Expert Elicitation
of Concentration-Response Relationship Between Fine Particulate
Matter Exposure and Mortality

In 2002, the National Research Council (NRC) recommended that EPA improve its characterization
of uncertainty in the benefits assessment for proposed regulations of air pollutants. NRC
recommended that probability distributions for key sources of uncertainty be developed using
available empirical data or through formal elicitation of expert judgments. In response to this
recommendation, EPA conducted an expert elicitation evaluation of the concentration-response
relationship between fine particulate matter (PM2;s) exposure and mortality, a key component of
the benefits assessment of the PM; s regulation. Further information on the expert elicitation
procedure and results is provided in Case Study 14. To evaluate the degree to which the results of
the assessment depended on the judgments of individual experts or on the methods of expert
elicitation, a probabilistic sensitivity analysis was performed on the results.

Probabilistic Analysis. The expert elicitation procedure used carefully constructed interviews to
elicit from each of 12 experts an estimate of the probabilistic distribution for the average expected
decrease in U.S. annual, adult, all-cause mortality associated with a 1 microgram per cubic meter
(ug/m3) decrease in annual average PM; s levels. This case study provides an example of the use of
probabilistic sensitivity analysis (Group 2) as one element of the overall assessment. For the
sensitivity analysis, a simplified health benefits analysis was conducted to assess the sensitivity of
the results to the responses of individual experts and to three factors in the study design: (1) the
use of parametric or nonparametric approaches by experts to characterize their uncertainty in the
PM;s mortality coefficient; (2) participation in the Pre-Elicitation Workshop; and (3) allowing
experts to change their judgments after the Post-Elicitation Workshop. The individual quantitative
expert judgments were used to estimate a distribution of benefits, in the form of the number of
deaths avoided, associated with a reduction in ambient, annual average PM2 s concentrations from
12 to 11 pg/m3. The 12 individual distributions of estimated avoided deaths were pooled using
equal weights to create a single overall distribution reflecting input from each expert. This
distribution served as the baseline for the sensitivity analysis, which compared the means and
standard deviations of the baseline distribution with several variants.

Results of Analysis. The first analysis examined the sensitivity of the mean and standard deviation
of the overall mortality distribution to the removal of individual experts’ distributions. In general,
the results suggested a fairly equal division between those experts whose removal shifted the
distribution mean up and those who shifted it down. There were relatively modest impacts of
individual experts. The standard deviation of the combined distribution also was not affected
strongly by the removal of individual experts. The second analysis evaluated whether the use of
parametric or nonparametric approaches affected the overall results. The results suggested that the
use of parametric distributions led to distributions with similar or slightly increased uncertainty
compared with distributions provided by experts who offered percentiles of a nonparametric
distribution. The last analysis evaluated whether participation in the Pre- or Post-Elicitation
Workshops affected the results. Participation in either workshop did not appear to have a
significant effect on experts’ judgments based on measures of change in the baseline distribution.
Overall, the sensitivity analyses demonstrated that the assessment was robust, with little
dependence on individual experts’ judgments or on the specific elicitation methods evaluated.

Management Considerations. The sensitivity analysis demonstrated the robustness of the PM;s
expert elicitation-based assessment by showing that the panel of experts was generally well
balanced and that alternative elicitation methods would not have markedly altered the overall
results.
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Selected References. The details of this analysis are provided in the Industrial Economics, Inc.,
document titled: Expanded Expert Judgment Assessment of the Concentration-Response Relationship
Between PM; s Exposure and Mortality, Final Report, September 21, 2006. This document is available
at http://www.epa.gov/ttn/ecas/regdata/Uncertainty/pm ee report.pdf.

The expert elicitation assessment, along with the Regulatory Impact Analysis (RIA) of the PM3 5
standard, is available at http://www.epa.gov/ttn/ecas/ria.html.

Case Study 7: Environmental Monitoring and Assessment Program:
Using Probabilistic Sampling to Evaluate the Condition of the Nation’s
Aquatic Resources

Monitoring is a key tool used to identify the locations where the environment is in a healthy
biological condition and requires protection, and where environmental problems are occurring and
need remediation. Most monitoring, however, is not performed in a way that allows for statistically
valid assessments of water quality conditions in unmonitored waters (USGAO 2000). States thus
cannot adequately measure the status and trends in water quality as required by the Clean Water
Act (CWA) Section 305(b).

The Environmental Monitoring and Assessment Program’s (EMAP) focus has been to develop
unbiased statistical survey design frameworks and sensitive indicators that allow the condition of
aquatic ecosystems to be assessed at state, regional and national scales. A cornerstone of EMAP has
been the use of probabilistic sampling to allow representative, unbiased, cost-effective condition
assessments for aquatic resources covering large areas. EMAP’s statistical survey methods are very
efficient, requiring relatively few sample locations to make valid scientific statements about the
condition of aquatic resources over large areas (e.g., the condition of all of the wadeable streams in
the western United States).

Probabilistic Analysis. This research program provides multiple case studies using probabilistic
sampling designs for different aquatic resources (estuaries, streams and rivers). An EMAP
probability-based sampling program delivers an unbiased estimate of the condition of an aquatic
resource over a large geographic area from a small number of samples. The principal
characteristics of a probabilistic sampling design are: the population being sampled is
unambiguously described; every element in the population has the opportunity to be sampled with
a known probability; and sample selection is conducted by a random process. This approach allows
statistical confidence levels to be placed on the estimates and provides the potential to detect
statistically significant changes and trends in condition with repeated sampling. In addition, this
approach permits the aggregation of data collected from smaller areas to predict the condition of a
large geographic area.

The EMAP design framework allows the selection of unbiased, representative sampling sites and
specifies the information to be collected at these sites. The validity of the overall inference rests on
the design and subsequent analysis to produce regionally representative information. The EMAP
uses the approach outlined in the EPA’s Generalized Random Tessellation Stratified Spatially-
Balanced Survey Designs for Aquatic Resources (Olsen 2012). The spatially balanced aspect spreads
out the sampling locations geographically, but still ensures that each element has an equal chance
of being selected.

Results of Analysis. Data collected using the EMAP approach has allowed the Agency to make
scientifically defensible assessments of the ecological condition of large geographic areas for
reporting to Congress under CWA 305(b). The EMAP approach has been used to provide the first
reports on the condition of the nation’s estuaries, streams, rivers and lakes, and it is scheduled to be
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used for wetlands. EMAP findings have been included in EPA’s Report on the Environment and the
Heinz Center’s The State of the Nation’s Ecosystems. Data collected through an EMAP approach
improve the ability to assess ecological progress in environmental protection and restoration, and
provide valuable information for decision makers and the public. The use of probabilistic analysis
methods allows meaningful assessment and regional comparisons of aquatic ecosystem conditions
across the United States. Finally, the probabilistic approach provides scientific credibility for the
monitoring network and aids in identifying data gaps.

Management Considerations. Use of an EMAP approach addresses criticisms from the
Government Accountability Office (GAO), the National Academy of Sciences (NAS), the Heinz Center
(a nonprofit environmental policy institution), and others that noted the nation lacked the data to
make scientifically valid characterizations of water quality regionally and across the United States.
The program provides cost-effective, scientifically defensible and representative data, to permit the
evaluation of quantifiable trends in ecosystem condition, to support performance-based
management and facilitate better public decisions regarding ecosystem management. EMAP’s
approach now has been adopted by EPA’s Office of Water (OW) to collect data on the condition of
all the nation’s aquatic resources. OW, Office of Air and Radiation (OAR) and Office of Chemical
Safety and Pollution Prevention (OCSPP; formerly the Office of Prevention, Pesticides, and Toxic
Substances) now have environmental accountability endpoints using EMAP approaches in their
Agency performance goals.

Selected References. General information concerning EMAP is available at
http://www.epa.gov/emap/index.html.

Information on EMAP monitoring designs is available at
http://www.epa.gov/nheerl/arm/designpages/monitdesign/monitoring design info.htm.

EPA’s Generalized Random Tessellation Stratified Spatially-Balanced Survey Designs for Aquatic
Resources document is available at
http://www.epa.gov/nheerl/arm/documents/presents/grts ss.pdf.

USGAO (U.S. Government Accountability Office). 2000. Water Quality: Key EPA and State Decisions
Limited by Inconsistent and Incomplete Data. GAO/RCED-00-54. Washington, D.C.: USGAO.
http://www.environmental-auditing.org/Portals/0/AuditFiles /useng00ar ft key epa.pdf.

USEPA (U.S. Environmental Protection Agency). 2002. EMAP Research Strategy. Research Triangle
Park, NC: Environmental Monitoring and Assessment Program, National Health and Environmental
Effects Research Laboratory (NHEERL), USEPA.

http://www.epa.gov/nheerl/emap/files/emap research strategy.pdf.

D.3. Group 3 Case Studies

Case Study 8: Two-Dimensional Probabilistic Risk Analysis of
Cryptosporidium in Public Water Supplies, With Bayesian
Approaches to Uncertainty Analysis

Probabilistic assessment of the occurrence and health effects associated with Cryptosporidium
bacteria in public drinking water supplies was used to support the economic analysis of the final
Long-Term 2 Enhanced Surface Water Treatment Rule (LT2). EPA’s Office of Ground Water and
Drinking Water (OGWDW) conducted this analysis and established a baseline disease burden
attributable to Cryptosporidium in public water supplies that use surface water sources. Next, it
modeled source water monitoring and finished water improvements that will be realized as a result
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of the LT2. Post-Rule risk is estimated and the LT2’s health benefit is the result of subtracting this
from the baseline disease burden.

Probabilistic Analysis. Probabilistic assessment was used for this analysis as a means of
addressing the variability in the occurrence of Cryptosporidium in raw water supplies, the
variability in the treatment efficiency, and the uncertainty in these inputs and in the dose-response
relationship for Cryptosporidium infection. This case study provides an example of a PRA that
evaluates both variability and uncertainty at the same time and is referred to as a two-dimensional
PRA. The analysis also included probabilistic treatments of uncertain dose-response and
occurrence parameters. Markov Chain Monte Carlo samples of parameter sets filled this function.
This Bayesian approach (treating the unknown parameters as random variables) differs from
classical treatments, which would regard the parameters as unknown, but fixed (Group 3:
Advanced PRA). The risk analysis used existing datasets (e.g., the occurrence of Cryptosporidium
and treatment efficacy) to inform the variability of these inputs. Uncertainty distributions were
characterized based on professional judgment or by analyzing data using Bayesian statistical
techniques.

Results of Analysis. The risk analysis identified the Cryptosporidium dose-response relationship as
the most critical model parameters in the assessment, followed by the occurrence of the pathogen
and treatment efficiency. By simulating implementation of the Rule using imprecise, biased
measurement methods, the assessment provided estimates of the number of public water supply
systems that would require corrective action and the nature of the actions likely to be implemented.
This information afforded a realistic measure of the benefits (in reduced disease burden) expected
with the LT2. In response to Science Advisory Board (SAB) comments, additional Cryptosporidium
dose-response models were added to more fully reflect uncertainty in this element of the
assessment.

Management Considerations. The LT2 underwent external peer review, review by EPA’s SAB and
intense review by the Office of Management and Budget (OMB). Occurrence and dose-response
components of the risk analysis model were communicated to stakeholders during the Rule’s
Federal Advisory Committee Act (FACA) process. Due to the rigor of the analysis and the signed
FACA “Agreement in Principle,” the OMB review was straightforward.

Selected References. The final assessment of occurrence and exposure to Cryptosporidium was
released in December 2005 and is available at
http: //www.epa.gov/safewater/disinfection/It2 /regulations.html.

Case Study 9: Two-Dimensional Probabilistic Model of Children’s
Exposure to Arsenic in Chromated Copper Arsenate Pressure-Treated
Wood

Probabilistic models were developed in response to EPA’s October 2001 Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory Panel (SAP) recommendations to use
probabilistic modeling to estimate children’s exposures to arsenic in CCA-treated playsets and
home decks.

Probabilistic Analysis. EPA’s ORD, in collaboration with the Office of Pesticide Programs (OPP),
developed and applied a probabilistic exposure assessment of children’s exposure to arsenic and
chromium from contact with CCA-treated wood playsets and decks. This case study provides an
example of the use of two-dimensional (i.e., addressing both variability and uncertainty)
probabilistic exposure assessment (Group 3: Advanced PRA). The two-dimensional assessment
employed a modification of ORD’s Stochastic Human Exposure and Dose Simulation (SHEDS) model
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to simulate children’s exposure to arsenic and chromium from CCA-treated wood playsets and
decks, as well as the surrounding soil. Staff from both ORD and OPP collaborated in the
development of the SHEDS-Wood model.

Results of Analysis. A draft of the probabilistic exposure assessment received SAP review in
December 2003; the final report was released in 2005. The results of the probabilistic exposure
assessment were consistent with or in the range of the results of deterministic exposure
assessments conducted by several other organizations. The model results were used to compare
exposures under a variety of scenarios, including cold versus warm weather activity patterns, use
of wood sealants to reduce the availability of contaminants on the surface of the wood, and different
hand-washing frequencies. The modeling of alternative mitigation scenarios indicated that the use
of sealants could result in the greatest exposure reduction, while increased frequency of hand
washing also could reduce exposure.

OPP used the SHEDS-Wood model exposure results in its probabilistic children’s risk assessment
for CCA (USEPA 2008). This included recommendations for risk reduction (use of sealants and
careful attention to children’s hand washing) to homeowners with existing CCA wood structures. In
addition, the exposure assessment was used to identify areas for further research, including: the
efficacy of wood sealants in reducing dislodgeable contaminant residues, the frequency with which
children play on or around CCA wood, and transfer efficiency and residue concentrations. To better
characterize the efficacy of sealants in reducing exposure, EPA and the Consumer Product Safety
Commission (CPSC) conducted a 2-year study of how dislodgeable contaminant residue levels
changed with the use of various types of commercially available wood sealants.

Management Considerations. The OPP used SHEDS results directly in its final risk assessment for
children playing on CCA-treated playground equipment and decks. The model enhanced risk
assessment and management decisions and prioritized data needs related to wood preservatives.
The modeling product was pivotal in the risk management and re-registration eligibility decisions
for CCA, and in advising the public how to minimize health risks from existing treated wood
structures. Industry also is using SHEDS to estimate exposures to CCA and other wood
preservatives. Some states are using the risk assessment as guidance in setting their regulations for
CCA-related playground equipment.

Selected References. The final probabilistic risk assessment based on the SHEDS-Wood exposure
assessment is available at
http://www.epa.gov/oppad001 /reregistration/cca/final cca factsheethtm.

The model results were included in the final report on the probabilistic exposure assessment of
CCA-treated wood surfaces: Zartarian, V.G, J. Xue, H. A. Ozkaynak, W. Dang, G. Glen, L. Smith, and C.
Stallings. 2006. A Probabilistic Exposure Assessment for Children Who Contact CCA-Treated Playsets
and Decks Using the Stochastic Human Exposure and Dose Simulation Model for the Wood
Preservative Scenario (SHEDS-Wood), Final Report. EPA/600/X-05/009. Washington, D.C.: USEPA.

Results of the sealant studies were released in January 2007 and are available at
http://www.epa.gov/oppad001 /reregistration/cca/index.htm#reviews.

The results of the analysis were published as: Zartarian, V.G., J. Xue, H. Ozkaynak, W. Dang, G. Glen,
L. Smith, and C. Stallings. 2006. “A Probabilistic Arsenic Exposure Assessment for Children who
Contact CAA-Treated Playsets and Decks, Part 1: Model Methodology, Variability Results, and Model
Evaluation.” Risk Analysis 26: 515-31.

More information on the analysis can be found by consulting the following resource:
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USEPA (U.S. Environmental Protection Agency). 2008. Case Study Examples of the Application of
Probabilistic Risk Analysis in U.S. Environmental Protection Agency Regulatory Decision-Making (In
Review). Washington, D.C.: Risk Assessment Forum, USEPA

Case Study 10: Two-Dimensional Probabilistic Exposure Assessment
of Ozone

As part of EPA’s recent review of the ozone National Ambient Air Quality Standards (NAAQS), the
Office of Air Quality Planning and Standards (OAQPS) conducted detailed probabilistic exposure
and risk assessments to evaluate potential alternative standards for ozone. At different stages of
this review, the Clean Air Scientific Advisory Committee (CASAC) Ozone Panel (an independent
scientific review committee of EPA’s SAB) and the public reviewed and provided comments on
analyses and documents prepared by EPA. A scope and methods plan for the exposure and risk
assessments was developed in 2005 (USEPA 2005). This plan was intended to facilitate
consultation with the CASAC, as well as public review, and to obtain advice on the overall scope,
approaches and key issues in advance of the completion of the analyses. This case study describes
the probabilistic exposure assessment, which addresses short-term exposures to ozone. The
exposure estimates were used as an input to the HHRA for lung function decrements in all children
and asthmatic school-aged children based on exposure-response relationships derived from
controlled human exposure studies.

Probabilistic Analysis. Population exposure to ambient ozone levels was evaluated using EPA’s
Air Pollutants Exposure (APEX) model, also referred to as the Total Risk Integrated
Methodology/Exposure (TRIM.Expo) model. Exposure estimates were developed for recent ozone
levels, based on 2002 to 2004 air quality data, and for ozone levels simulated to just meet the
existing 0.08 ppm, 8-hour ozone NAAQS and several alternative ozone standards, based on
adjusting the 2002 to 2004 air quality data. Exposure estimates were modeled for 12 urban areas
located throughout the United States for the general population, all school-age children and
asthmatic school-age children. This exposure assessment is described in a technical report
(USEPA 2007b). The exposure model APEX is documented in a user’s guide and technical document
(USEPA 2006). A Monte Carlo approach was used to produce quantitative estimates of the
uncertainty in the APEX model results, based on estimates of the uncertainties for the most
important model inputs. The quantification of model input uncertainties, a discussion of model
structure uncertainties, and the results of the uncertainty analysis are documented in

Langstaff (2007).

Results of Analysis. Uncertainty in the APEX model predictions results from uncertainties in the
spatial interpolation of measured concentrations, the microenvironment models and parameters,
people’s activity patterns, and to a lesser extent, model structure. The predominant sources of
uncertainty appear to be the human activity pattern information and the spatial interpolation of
ambient concentrations from monitoring sites to other locations. The primary policy-relevant
finding was that the uncertainty in the exposure assessment is small enough to lend confidence to
the use of the model results for the purpose of informing the Administrator’s decision on the ozone
standard.

Figure A-3 illustrates the uncertainty distribution for one model result, the percent of children with
exposures above 0.08 ppm, 8-hour while at moderate exertion. The point estimate of 20 percent is
the result from the APEX simulation using the best estimates of the model inputs. The
corresponding result from the Monte Carlo simulations ranges from 17 to 26 percent, with a

95 percent uncertainty interval (UI) of 19 to 24 percent. Note that the Uls are not symmetric
because the distributions are skewed.
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Management Considerations. The exposure analysis also provided information on the frequency
with which population exposures exceeded several potential health effect benchmark levels that
were identified based on the evaluation of health effects in clinical studies.

The exposure and risk assessments are summarized in Chapters 4 and 5, respectively, of the Ozone
Staff Paper (USEPA 2007a). The exposure estimates over these potential health effect benchmarks
were part of the basis for the Administrator’s March 27, 2008, decision to revise the ozone NAAQS
from 0.08 to 0.075 ppm, 8-hour average (see the final rule for the ozone NAAQS?).
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Figure A-3. Uncertainty Distribution Model Results. The estimated percentage of children with 8-hour
exposures above 0.08 ppm at moderate exertion (the point estimate is 20%).

Selected References. More information on the analysis can be found by consulting the following
resources:

Langstaff, J. E. 2007. Analysis of Uncertainty in Ozone Population Exposure Modeling. Office of Air
Quality Planning and Standards Staff Memorandum to Ozone NAAQS Review Docket. 0AR-2005-
0172. http://www.epa.gov/ttn/naaqs/standards/ozone/s ozone cr td.html

USEPA (U.S. Environmental Protection Agency). 2005. Ozone Health Assessment Plan: Scope and
Methods for Exposure Analysis and Risk Assessment. Research Triangle Park, NC: Office of Air Quality
Planning and Standards, USEPA. http://www.epa.gov/ttn/naags/standards/ozone/s 03 cr pd.html

USEPA. 2006. Total Risk Integrated Methodology (TRIM)—Air Pollutants Exposure Model
Documentation (TRIM.Expo/APEX, Version 4) Volume I: User’s Guide; Volume II: Technical Support
Document. Research Triangle Park, NC: Office of Air Quality Planning and Standards, USEPA. June

2006. http://www.epa.gov/ttn/fera/human apex.html

USEPA. 2007a. Review of National Ambient Air Quality Standards for Ozone: Policy Assessment of
Scientific and Technical Information—OAQPS Staff Paper. Research Triangle Park, NC: Office of Air
Quality Planning and Standards, USEPA.

http://www.epa.gov/ttn/naags/standards/ozone/s ozone cr sp.html

1 National Ambient Air Quality Standards for Ozone, Final Rule. 73 Fed. Reg. 16436 (Mar. 27, 2008).
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USEPA. 2007b. Ozone Population Exposure Analysis for Selected Urban Areas. Research Triangle
Park, NC: Office of Air Quality Planning and Standards, USEPA.
http://www.epa.gov/ttn/naaqgs/standards/ozone/s ozone cr td.html

Case Study 11: Analysis of Microenvironmental Exposures to Fine
Particulate Matter for a Population Living in Philadelphia,
Pennsylvania

This case study used the Stochastic Human Exposure and Dose Simulation model for Particulate
Matter (SHEDS-PM) developed by EPA’s National Exposure Research Laboratory (NERL) to prepare
a probabilistic assessment of population exposure to PM; s in Philadelphia, Pennsylvania. This case
study simulation was prepared to accomplish three goals: (1) estimate the contribution of PM; s of
ambient (outdoor) origin to total PM; s exposure; (2) determine the major factors that influence
personal exposure to PM;s; and (3) identify factors that contribute the greatest uncertainty to
model predictions.

Probabilistic Analysis. The two-dimensional probabilistic assessment used a microexposure event
technique to simulate individual exposures to PM; s in specific microenvironments (outdoors,
indoor residence, office, school, store, restaurant or bar, and in a vehicle). The population for the
simulation was generated using demographic data at the census-tract level from the U.S. Census.
Characteristics of the simulated individuals were selected randomly to match the demographic
proportions within the census tract for gender, age, employment status and housing type. The
assessment used spatially and temporally interpolated ambient PM; s measurements from 1992 to
1993 and 1990 U.S. Census data for each census tract in Philadelphia. This case study provides an
example of both two-dimensional (variability and uncertainty) probabilistic assessment and
microexposure event assessment (Group 3: Advanced PRA).

Results of Analysis. Results of the analysis showed that human activity patterns did not have as
strong an influence on ambient PM; 5 exposures as was observed for exposure to indoor PM; 5
sources. Exposure to PM; s of ambient origin contributed a significant percent of the daily total PM; s
exposures, especially for the segment of the population without exposure to environmental tobacco
smoke in the residence. Development of the SHEDS-PM model using the Philadelphia PM; 5 case
study also provided useful insights into data needs for improving inputs into the SHEDS-PM model],
reducing uncertainty and further refinement of the model structure. Some of the important data
needs identified from the application of the model include: daily PM, s measurements over multiple
seasons and across multiple sites within an urban area, improved capability of dispersion models to
predict ambient PM; 5 concentrations at greater spatial resolution and over a 1-year time period,
measurement studies to better characterize the physical factors governing infiltration of ambient
PM;sinto residential microenvironments, further information on particle-generating sources
within the residence, and data for the other indoor microenvironments not specified in the model.

Management Considerations. The application of the SHEDS-PM model to the Philadelphia
population gave insights into data needs and areas for model refinement. The continued
development and evaluation of the SHEDS-PM population exposure model are being conducted as
part of ORD’s effort to develop a source-to-dose modeling system for PM and air toxics. This type of
exposure and dose modeling system is considered to be important for the scientific and policy
evaluation of the critical pathways, as well as the exposure factors and source types influencing
human exposures to a variety of environmental pollutants, including PM.
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Selected References. The results of the analysis were published in:

Burke, J., M. Zufall, and H. Ozkaynak. 2001. “A Population Exposure Model for Particulate Matter:
Case Study Results for PM; s in Philadelphia, PA.” Journal of Exposure Analysis and Environmental
Epidemiology 11 (6): 470-89.

Georgepoulos, P. G, S. W. Wang, V. M. Vyas, Q. Sun, ]. Burke, R. Vedantham, T. McCurdy, and H.
Ozkaynak. 2005. “A Source-to-Dose Assessment of Population Exposure to Fine PM and Ozone in
Philadelphia, PA, During a Summer 1999 Episode.” Journal of Exposure Analysis and Environmental
Epidemiology 15 (5): 439-57.

Case Study 12: Probabilistic Analysis in Cumulative Risk Assessment
of Organophosphorus Pesticides

In 1996, Congress enacted the Food Quality Protection Act (FQPA), which requires EPA to consider
“available evidence concerning the cumulative effects on infants and children of such residues and
other substances that have a common mechanism of toxicity” when setting pesticide tolerances (i.e.,
the maximum amount of pesticide residue legally allowed to remain on food products). FQPA also
mandated that EPA completely reassess the safety of all existing pesticide tolerances (those in effect
since August 1996) to ensure that they are supported by current scientific data and meet current
safety standards. Because organophosphorus pesticides (OPs) were assigned priority for tolerance
reassessment, these pesticides were the first “common mechanism” group identified by EPA’s OPP.
The ultimate goal associated with this cumulative risk assessment (CRA) was to provide a basis for
the decision maker to establish safe tolerance levels for this group of pesticides, while meeting the
FQPA standard for protecting infants and children.

Probabilistic Analysis. This case study provides an example of an advanced probabilistic
assessment (Group 3). In 2006, EPA analyzed exposures to 30 OPs through food consumption,
drinking water intake, and exposure via pesticide application. Distributions of human exposure
factors, such as breathing rates, body weight and surface areas used in the assessment, came from
the Agency’s Exposure Factors Handbook (USEPA 1997d). EPA used Calendex, a probabilistic
computer software program (available at http://www.epa.gov/pesticides/science/deem/) to
integrate various pathways, while simultaneously incorporating the time dimensions of the input
data. Based on the results of the exposure assessment, EPA calculated margins of exposure (MOEs)
for the total cumulative risk from all pathways for each age group (infant less than 1; children 1-2,
3-5, 6-12; youth 13-19; and adults 20-49 and 50+ years of age).

The food component of the OPs CRA was highly refined, as it was based on residue monitoring data
from the USDA’s PDP and supplemented with information from the FDA’s Surveillance Monitoring
Programs and Total Diet Study. The residue data were combined with actual consumption data
from USDA’s Continuing Survey of Food Intakes by Individuals (CSFII) using probabilistic
techniques. The CRA evaluated drinking water exposures on a regional basis. The assessment
focused on areas where combined OP exposure is likely to be highest within each region. Primarily,
the analysis used probabilistic modeling to estimate the co-occurrence of OP residues in water.
Monitoring data were not available with enough consistency to be the sole basis for the assessment;
however, they were used to corroborate the modeling results. Data sources for the water
component of the assessment included USDA Agricultural Usage Reports for Field Crops, Fruits and
Vegetables; USDA Typical Planting and Harvesting Dates for Field Crops and Fresh Market and
Processing Vegetables; local sources for refinements; and monitoring studies from the U.S.
Geological Survey (USGS) and other sources. Finally, exposure via the oral, dermal and inhalation
routes resulting from applications of OPs in and around homes, schools, offices and other public
areas were assessed probabilistically for each of the seven regions. The data sources for this part of
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the assessment included information from surveys and task forces, special studies and reports from
published scientific literature, EPA’s Exposure Factors Handbook (USEPA 1997d), and other sources.

Results of Analysis. The OPs CRA presented potential risk from single-day (acute) exposures
across 1 year and from a series of 21-day rolling averages across the year. MOEs at the 99.9th
percentile were approximately 100 or greater for all populations for the 21-day average results.
The only exception is a brief period (roughly 2 weeks) in which drinking water exposures
(identified from the Exposure Factors Handbook, USEPA 1997d) attributed to phorate use on
sugarcane resulted in MOEs near 80 for children ages 1 to 2 years. Generally, exposures through the
food pathway dominated total MOEs, and exposures through drinking water were substantially
lower throughout most of the year. Residential exposures were substantially smaller than
exposures through both food and drinking water.

The OPs CRA was very resource intensive. Work began in 1997 with the preparation of guidance
documents and the development of a CRA methodology. Over 2 to 3 years, more than 25 people
spent 50 to 100 percent of their time working on the assessment, with up to 50 people working on
the CRA at critical periods. EPA has spent approximately $1 million on this assessment (e.g., for
computers, models and contractor support).

Management Considerations. The OPs CRA was a landmark demonstration of the feasibility of a
regulatory-level assessment of the risk from multiple chemicals. Upon completion, EPA presented
the CRA at numerous public technical briefings and FIFRA SAP meetings, and made all of the data
inputs available to the public. The OPP’s substantial effort to communicate methodologies,
approaches and results to the stakeholders aided in the success of the OPs CRA. The stakeholders
expressed appreciation for the transparent nature of the OPs CRA and recognized the innovation
and hard work that went into developing the assessments.

Selected References. The 2006 assessment and related documents are available at
http://www.epa.gov/pesticides/cumulative/common mech groups.htm#op.

USEPA (U.S. Environmental Protection Agency). 1997d. Exposure Factors Handbook. Washington,
D.C.: National Center for Environmental Assessment, USEPA.
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12464.

Case Study 13: Probabilistic Ecological Effects Risk Assessment
Models for Evaluating Pesticide Use

As part of the process of developing and implementing a probabilistic approach for ERA, an
illustrative case was completed in 1996. This case involved both DRA and PRA for the effects of a
hypothetical chemical X (ChemX) on birds and aquatic species. Following the recommendations of
the SAP and in response to issues raised by OPP risk managers, the Agency began an initiative to
refine the ERA process for evaluating the effects of pesticides to terrestrial and aquatic species
within the context of FIFRA, the main statutory authority for regulating pesticides at the federal
level. The key goals and objectives of EPA’s initiative were to:

O Incorporate probabilistic tools and methods to provide an estimate on the magnitude and
probability of effects.

(O Build on existing data requirements for registration.

a

Utilize, wherever possible, existing databases and create new ones from existing data
sources to minimize the need to generate additional data.

O Focus additional data requirements on reducing uncertainty in key areas.
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After proposing a four-level risk assessment scheme, with higher levels reflecting more refined risk
assessment techniques, the Agency developed pilot models for both terrestrial and aquatic species.
Refined risk assessment models (Level II) then were developed and used in a generic chemical case
study that was presented to the SAP in 2001.

Probabilistic Analysis. This case study describes an advanced probabilistic model for the
ecological effects of pesticides (Group 3). The terrestrial Level Il model (version 2.0) is a
multimedia exposure/effects model that evaluates acute mortality levels in generic or specific avian
species over a user-defined exposure window. The spatial scale is at the field level, which includes
the field and surrounding area. Both areas are assumed to meet the habitat requirements for each
species, and contamination of edge or adjacent habitat from drift is assumed to be zero. For each
individual bird considered in a run of the Level Il model, a random selection of values is made for
the major exposure input parameters to estimate an external oral dose equivalent for that
individual. The estimated dose equivalent is compared to a randomly assigned tolerance for the
individual preselected from the dose-response distribution. If the dose is greater than the tolerance,
the individual is scored “dead,” if not, the individual is scored “not dead.” After multiple iterations of
individuals, a probability density function of percent mortality is generated.

From May 29 to 31, 1996, the Agency presented two ERA case studies to the SAP for review and
comment. Although recognizing and generally reaffirming the utility of EPA’s current deterministic
assessment process, the SAP offered a number of suggestions for improvement. Foremost among
their suggestions was a recommendation to move beyond the existing deterministic assessment
approach by developing the tools and methodologies necessary to conduct a probabilistic
assessment of effects. Such an assessment would estimate the magnitude and probability of the
expected impact and define the level of certainty and variation involved in the estimate; risk
managers within EPA’s OPP also had requested this information in the past.

The aquatic Level Il model is a two-dimensional Monte Carlo risk model consisting of three main
components: (1) exposure, (2) effects and (3) risk. The exposure scenarios used at Level Il are
intended to provide estimates for vulnerable aquatic habitats across a wide range of geographical
conditions under which a pesticide product is used. The Level Il risk evaluation process yields
estimates of likelihood and magnitude of effects for acute exposures. For the estimate of acute risks,
a distribution of estimated exposure and a distribution of lethal effects are combined through a 2-D
MCA to obtain a distribution of joint probability functions. For the estimate of chronic risks, a
distribution of exposure concentrations is compared to a chronic measurement endpoint. The risk
analysis for chronic effects provides information only on the probability that the chronic endpoint
assessed will be exceeded, not on the magnitude of the chronic effect expected.

Results of Analysis. As part of the process of developing and implementing a probabilistic
approach for ERA, a case study was completed. The case study involved both DRAs and PRAs for
effects of ChemX on birds and aquatic species. The deterministic screen conducted on ChemX
concluded qualitatively that it could pose a high risk to both freshwater fish and invertebrates and
showed that PRA was warranted. Based on the probabilistic analysis, it was concluded that the use
of ChemX was expected to infrequently result in significant freshwater fish mortalities but routinely
result in reduced growth and other chronic effects in exposed fish. Substantial mortalities and
chronic effects to sensitive aquatic invertebrates were predicted to occur routinely after peak
exposures.

Management Considerations. In its review of the case study, the FIFRA SAP congratulated the
Agency on the effort made to conduct PRA of pesticide effects in ecosystems. The panel commented
that the approach had progressed greatly from earlier efforts, and that the intricacy of the models
was surprisingly good, given the time interval in which the Agency had to complete the task.
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Following the case study, EPA refined the models based on the SAP comments. In addition, the
terrestrial Level Il model was refined to include dermal and inhalation exposure.

Selected References. An overview of the models is available at
http://www.epa.gov/oppefedl/ecorisk/fifrasap/rra exec sum.htm#Terrestrial.

Case Study 14: Expert Elicitation of Concentration-Response
Relationship Between Fine Particulate Matter Exposure and Mortality

In 2002, the NRC recommended that EPA improve its characterization of uncertainty in the benefits
assessment for proposed regulations of air pollutants. NRC recommended that probability
distributions for key sources of uncertainty be developed using available empirical data or through
formal elicitation of expert judgments. A key component of EPA’s approach for assessing potential
health benefits associated with air quality regulations targeting emissions of PM;s and its
precursors is the effect of changes in ambient PM; 5 levels on mortality. Avoided premature deaths
constitute, on a monetary basis, between 85 and 95 percent of the monetized benefits reported in
EPA’s retrospective and prospective Section 812A benefit-cost analyses of the Clean Air Act (CAA;
USEPA 1997e and 1999) and in Regulatory Impact Analysis (RIA) for rules such as the Heavy Duty
Diesel Engine/Fuel Rule (USEPA 2000c) and the Non-Road Diesel Engine Rule (USEPA 2004). In
response to the NRC recommendation, EPA conducted an expert elicitation evaluation of the
concentration-response relationship between PM; 5 exposure and mortality.

Probabilistic Analysis. This case study provides an example of the use of expert elicitation (Group
3) to derive probabilistic estimates of the uncertainty in one element of a cost-benefit analysis.
Expert elicitation uses carefully structured interviews to elicit from each expert a best estimate of
the true value for an outcome or variable of interest, as well as their uncertainty about the true
value. This uncertainty is expressed as a subjective probabilistic distribution of values and reflects
each expert’s interpretation of theory and empirical evidence from relevant disciplines, as well as
their beliefs about what is known and not known about the subject of the study. For the PM; 5
expert elicitation, the process consisted of development of an elicitation protocol, selection of
experts, development of a briefing book, conduct of elicitation interviews, the use of expert input
prior to and following individual elicitation of judgments and the expert judgments themselves. The
elicitation involved personal interviews with 12 health experts who had conducted research on the
relationship between PM; s exposures and mortality.

The main quantitative question asked each expert to provide a probabilistic distribution for the
average expected decrease in U.S. annual, adult and all-cause mortality associated with a 1 pg/ms3
decrease in annual average PM; s levels. When answering the main quantitative question, each
expert was instructed to consider that the total mortality effect of a 1 pg/m3 decrease in ambient
annual average PM; 5 may reflect reductions in both short-term peak and long-term average
exposures to PM;s. Each expert was asked to aggregate the effects of both types of changes in their
answers. The experts were given the option to integrate their judgments about the likelihood of a
causal relationship or threshold in the concentration-response function into their own distributions
or to provide a distribution “conditional on” one or both of these factors.

Results of Analysis. The project team developed the interview protocol between October 2004 and
January 2006. Development of the protocol was informed by an April 2005 symposium held by the
project team, where numerous health scientists and analysts provided feedback; detailed pretesting
with independent EPA scientists in November 2005; and discussion with the participating experts
at a pre-elicitation workshop in January 2006. The elicitation interviews were conducted between
January and April 2006. Following the interviews, the experts reconvened for a post-elicitation
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workshop in June 2006, in which the project team anonymously shared the results of all experts
with the group.

The median estimates for the PM; s mortality relationship were generally similar to estimates
derived from the two epidemiological studies most often used in benefits assessment. However, in
almost all cases, the spread of the uncertainty distributions elicited from the experts exceeded the
statistical uncertainty bounds reported by the most influential epidemiologic studies, suggesting
that the expert elicitation process was successful in developing more comprehensive estimates of
uncertainty for the PM; s mortality relationship. The uncertainty distributions for PM; s
concentration-response resulting from the expert elicitation process were used in the RIA for the
revised NAAQS standard for PM; 5 (promulgated on September 21, 2006). Because the NAAQS are
exclusively health-based standards, this RIA played no part in EPA’s determination to revise the
PM25 NAAQS. Benefits estimates in the RIA were presented as ranges and included additional
information on the quantified uncertainty distributions surrounding the points on the ranges,
derived from both epidemiological studies and the expert elicitation results. OMB’s review of the
RIA was completed in March 2007.

Management Considerations. The NAAQS are exclusively health-based standards, so these
analyses were not used in any manner by EPA in determining whether to revise the NAAQS for
PM;s. Moreover, the request to engage in the expert elicitation did not come from the CASAC, the
official peer review body for the NAAQS; a decision to conduct the analyses does not reflect CASAC
advice that such analyses inform NAAQS determinations. The analyses addressed comments from
the NRC that recommended that probability distributions for key sources of uncertainty be
addressed. The analyses were used in EPA’s retrospective and prospective Section 812A benefit-
cost analyses of the CAA (USEPA 1997e and 1999) and in RIAs for rules such as the Heavy Duty
Diesel Engine/Fuel Rule (USEPA 2000c) and the Non-Road Diesel Engine Rule (USEPA 2004). In
response to the NRC recommendation, EPA conducted an expert elicitation evaluation of the
concentration-response relationship between PM; 5 exposure and mortality.

Selected Reference. The assessment is available at http: //www.epa.gov/ttn/ecas/ria.html.

Case Study 15: Expert Elicitation of Sea-Level Rise Resulting From
Global Climate Change

The United Nations Framework Convention on Climate Change requires nations to implement
measures for adapting to rising sea level and other effects of changing climate. To decide on an
appropriate response, coastal planners and engineers weigh the cost of these measures against the
likely cost of failing to prepare, which depends on the probability of the sea rising a particular
amount. The U.S. National Academy of Engineering recommended that assessments of sea level rise
should provide probability estimates. Coastal engineers regularly employ probability information
when designing structures for floods, and courts use probabilities to determine the value of land
expropriated by regulations. This 1995 case study describes the development of a probability
distribution for sea level rise, using models employed by previous assessments, as well as the
expert opinions of 20 climate and glaciology reviewers about the probability distributions for
particular model coefficients.

Probabilistic Analysis. This case study provides an example both of an analysis describing the
probability of sea level rise, as well as an expert elicitation of the likelihood of particular models
and probability distributions of the coefficients used by those models to predict future sea level rise
(Group 3). The assessment of the probability of sea level rise used existing models describing the
change in five components of sea level rise associated with greenhouse gas-related climate change
(thermal expansion, small glaciers, polar precipitation, melting and ice discharge from Greenland
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and ice discharge from Antarctica). To provide a starting point for the expert elicitation, initial
probability distributions were assigned to each model coefficient based on the published literature.

After the initial probabilistic assessment was completed, the draft report was circulated to expert
reviewers considered most qualified to render judgments on particular processes for revised
estimates of the likelihood of particular models and the model coefficients’ probability
distributions. Experts representing both extremes of climate change science (those who predicted
trivial consequences and those who predicted catastrophic effects; individuals whose thoughts had
been excluded from previous assessments) were included. The experts were asked to provide
subjective assessments of the probabilities of various models and model coefficients. These
subjective probability estimates were used in place of the initial probabilities in the final model
simulations. Different reviewer opinions were not combined to produce a single probability
distribution for each parameter; instead, each reviewer’s opinions were used in independent
iterations of the simulation. The group of simulations resulted in the probability distribution of sea
level rise.

Results of Analysis. The analysis, completed with a budget of $100,000, provided a probabilistic
estimate of sea level rise for use by coastal engineers and regulators. The results suggested that
there is a 65 percent chance that the sea level will rise 1 millimeter (mm) per year more rapidly in
the next 30 years than it has been rising in the last century. Under the assumption that nonclimatic
factors do not change, the projections suggested that there is a 50 percent chance that the global
sea level will rise 45 centimeters (cm), and a 1 percent chance of a 112 cm rise by the year 2100.
The median prediction of sea level rise was similar to the midpoint estimate of 48 cm published by
the Intergovernmental Panel on Climate Change (IPCC) shortly thereafter (IPCC 1996). The report
also found a 1 percent chance of a 4 to 5 meter rise over the next 2 centuries.

Management Considerations. There are two reports (USEPA 1995c; Titus and Narayanan 1996)
that discuss several uses of the results of this study. By providing a probabilistic representation of
sea level rise, the assessment allows coastal residents to make decisions with recognition of the
uncertainty associated with predicted change. Rolling easements that vest when the sea rises to a
particular level can be properly valued in both “arms-length” transaction sales or when calculating
the allowable deduction for a charitable contribution of the easement to a conservancy. Cost-benefit
assessments of alternative infrastructure designs—which already consider flood probabilities—
also can consider sea level rise uncertainty. Assessments of the benefits of preventing an
acceleration of sea level rise can include more readily low-probability outcomes, which can provide
a better assessment of the true risk when the damage function is nonlinear, which often is the case.

Selected References.

USEPA (U.S. Environmental Protection Agency). 1995c. The Probability of Sea Level Rise.
EPA/230/R-95/008. Washington, D.C.: Climate Change Division, USEPA.
http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20011G10.txt

[PCC (Intergovernmental Panel on Climate Change). 1996. Climate Change 1995: The Science of
Climate Change. Contribution of Working Group I to the Second Assessment of the Intergovernmental
Panel on Climate Change. Cambridge: Cambridge University Press.

Titus, . G., and V. Narayanan. 1996. “The Risk of Sea Level Rise.” Climatic Change 33(2): 151-212.

Case Study 16: Knowledge Elicitation for a Bayesian Belief Network
Model of Stream Ecology

The identification of the causal pathways leading to stream impairment is a central challenge to
understanding ecological relationships. Bayesian belief networks (BBNs) are a promising tool for
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modeling presumed causal relationships, providing a modeling structure within which different
factors describing the ecosystem can be causally linked and calculating uncertainties expressed for
each linkage.

BBNs can be used to model complex systems that involve several interdependent or interrelated
variables. In general, a BBN is a model that evaluates situations where some information already is
known, and incoming data are uncertain or partially unavailable. The information is depicted with
influence diagrams that present a simple visual representation of a decision problem, for which
quantitative estimates of effect probabilities are assigned. As such, BBNs have the potential for
representing ecological knowledge and uncertainty in a format that is useful for predicting
outcomes from management actions or for diagnosing the causes of observed conditions. Generally,
specification of a BBN can be performed using available experimental data, literature review
information (secondary data) and expert elicitation. Attempts to specify a BBN for the linkage
between fine sediment load and macroinvertebrate populations using data from literature reviews
have failed because of the absence of consistent conceptual models and the lack of quantitative data
or summary statistics needed for the model. In light of these deficiencies, an effort was made to use
expert elicitation to specify a BBN for the relationship between fine sediment load resulting from
human activity and populations of macroinvertebrates. The goals of this effort were to examine
whether BBNs might be useful for modeling stream impairment and to assess whether expert
opinion could be elicited to make the BBN approach useful as a management tool.

Probabilistic Analysis. This case study provides an example of expert elicitation in the
development of a BBN model of the effect of increased fine sediment load in a stream on
macroinvertebrate populations (Group 3). For the purpose of this study, a stream setting

(a Midwestern, low-gradient stream) and a scenario of impairment (introduction of excess fine
sediment) were used. Five stream ecologists with experience in the specified geographic setting
were invited to participate in an elicitation workshop. An initial model was depicted using influence
diagrams, with the goals of structuring and specifying the model using expert elicitation. The
ecologists were guided through a knowledge elicitation session in which they defined factors that
described relevant chemical, physical and biological aspects of the ecosystem. The ecologists then
described how these factors were connected and were asked to provide subjective, quantitative
estimates of how different attributes of the macroinvertebrate assemblage would change in
response to increased levels of fine sediment. Elicited input was used to restructure the model
diagram and to develop probabilistic estimates of the relationships among the variables.

Results of Analysis. The elicited input was compiled and presented in terms of the model as
structured by the stream ecologists and their model specifications. The results were presented both
as revised influence diagrams and with Bayesian probabilistic terms representing the elicited input.
The study yielded several important lessons. Among these were that the elicitation process takes
time (including an initial session by teleconference as well as a 3-day workshop), defining a
scenario with an appropriate degree of detail is critical and elicitation of complex ecological
relationships is feasible.

Management Considerations. The study was considered successful for several reasons. First, the
feasibility of the elicitation approach to building stream ecosystem models was demonstrated. The
study also resulted in the development of new graphical techniques to perform the elicitation. The
elicited input was interpreted in terms of predictive distributions to support fitting a complete
Bayesian model. Furthermore, the study was successful in bringing together a group of experts in a
particular subject area for the purpose of sharing information and learning about expert elicitation
in support of model building. The exercise provided insights into how best to adapt knowledge
elicitation methods to ecological questions and informed the assembled stream ecologists on the
elicitation process and on the potential benefits of this modeling approach. The explicit
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quantification of uncertainty in the model not only enhances the utility of the model predictions,
but also can help guide future research.

Selected References.
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COST, PERMITTING, AND TREATMENT IMPLICATIONS OF THE DRAFT POLYCHLORINATED
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1 INTRODUCTION

On October 7, 2015, the Idaho Department of Environmental Quality (IDEQ) released draft changes to the
Idaho water quality criteria, which included a reduction of the human health criterion for polychlorinated
biphenyls (PCBs) for the consumption of water and fish from 64 picograms per liter (pg/L) to 61 pg/L. Due
to the ubiquity of PCBs in ambient surface waters as a result of historic use, high treatment costs to
achieve low PCB concentrations in effluents, and limited resources for monitoring and enforcement, the
proposed change of the water quality criterion for PCBs would impose significant treatment and
monitoring costs on the regulated community and a significant burden on the regulatory community.

2 REGULATORY BURDEN

2.1 PCB Monitoring and Enforcement in Idaho

Idaho Department of Environmental Quality’s (IDEQ’s) surface water quality monitoring program,
consisting of the Beneficial Use Reconnaissance Program, National Aquatic Resource Surveys, Trend
Monitoring Network, and special studies, does not currently monitor for PCBs in ambient surface waters.
The data collected from these monitoring programs are used to develop Integrated Reports, which are
submitted to the U.S. Environmental Protection Agency (USEPA) every 2 years, in accordance with
sections 303(d), 305(bh), and 314 of the Clean Water Act, and provide an assessment of whether Idaho’s
water bodies meet state water quality criteria and support beneficial uses. Part of the Integrated Report
provides a list of water bodies that do not meet the state’s water quality criteria for one or more beneficial
uses by one or more pollutant and require the development of a total maximum daily load (TMDL (i.e.,
“303(d) list of impaired waters”). Given that IDEQ’s monitoring program does not actively monitor for
PCBs, PCB concentration data are not available for Idaho surface waters and PCBs are not currently
listed as a cause of impairment for Idaho’s water bodies (IDEQ 2012 Integrated Report).

Although PCB concentration data are not available for ambient surface waters in Idaho, it is expected that
PCBs are ubiquitous in surface waters of developed areas, at concentrations that exceed IDEQ’s draft
water quality criterion for PCBs. The ubiquity of PCBs in surface waters of developed areas is supported
by PCB concentration data collected by other states. According to data collected by 26 states between
1975 and 2014 and available in USEPA's Storage and Retrieval Data Warehouse (STORET) and U.S.
Geological Survey’s National Water Quality Assessment (NAWQA) Program, PCB concentrations in
surface waters range from 3.8 pg/L to 124 micrograms per liter (ug/L). Most of these concentrations
and/or detection limits are above IDEQ’s draft PCB criterion of 61 pg/L. This national presence in waters
supports the expectation that PCBs also exist in Idaho waters despite not being used in any industrial or
other application as a result of the PCB ban in place since 1979.

2.2 Implications of the Proposed PCB Standard

Enforcement of the draft water quality criterion for PCBs will require IDEQ to include PCBs in its surface
water monitoring program, thereby increasing routine monitoring costs. Given the low draft PCB criterion
and the ubiquity of PCBs in the environment, the number of water quality impairments caused by PCBs is

arcadis.com
c:\users\aschaffer\documents\clearwater\final report\pcbs in idaho surface waters report_11-04-2015.docx



COST, PERMITTING, AND TREATMENT IMPLICATIONS OF THE DRAFT POLYCHLORINATED
BIPHENYLS WATER QUALITY CRITERION

anticipated to increase if the draft PCB criterion is enforced. Once a water body is listed as impaired,
IDEQ is required to develop, implement, and enforce a TMDL, and apply PCB National Pollutant
Discharge Elimination System (NPDES) requirements on all dischargers on those waters. These all add
significant additional regulatory burden and costs and divert resources that could be better used for other
monitoring, enforcement, and clean-up efforts.

3 COSTS TO THE REGULATED COMMUNITY
3.1 PCB Permitting and Treatment

Because PCBs are not currently monitored in Idaho surface waters, industrial and municipal facilities have
not been required to monitor and/or treat their effluent for PCBs before discharging to surface waters. Of
the 23 industrial and 136 municipal NPDES permits issued to facilities in Idaho, none include monitoring
requirements for PCBs or specify treatment technologies to remove PCBs from effluents. Therefore, there
are currently no costs to industrial and municipal facilities associated with monitoring and removal of
PCBs.

3.2 Implications of the Proposed PCB Criterion

Enforcement of the draft water quality criterion for PCBs will require industrial and municipal facilities to
monitor and treat their effluent for PCBs because PCB concentrations in effluents are likely above the
criterion given their ubiquitous presence in the environment. These monitoring and treatment efforts will
impose significant costs on the regulated community across the state. The Treatment Technology Review
and Assessment report by HDR Engineering Inc. “Treatment Technology Review and Assessment.
Association of Washington Business, Association of Washington Cities, Washington State Association of
Counties” was used as the basis for estimating the cost implications for industrial and municipal permit
holders in Idaho. The cost presented by HDR assumed treatment of PCBs, arsenic, mercury and
benzo(a)pyrene to the revised Washington State effluent limits as discussed in the report. The tables
below present the estimated capital and annual operational costs for all industrial and municipal permit
holders based on 2015 dollars and projected out to 2041. Despite these high treatment costs, the draft
PCB criterion may not be achievable due to limitations of available technology.
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Idaho-Wide Costs for Industrial and Municipal Permit Holders

ldaho-Wide Cost for Industrial Permit Holders

Present Day Value (2015) [Net Present Value 25 Years (2015 dollars)

Capital Expenses $1,950 M $2,570 M

Annual Operational Expenses [$78.4 M

Idaho-Wide Cost for Municipal Permit Holders

Present Day Value (2015) |Net Present Value 25 Years (2015 dollars)

Capital Expenses $8,980 M $13,800 M

Annual Operational Expenses |$366 M

The cost estimates are planning level and present a cost range for each applicable option. The estimates
were developed based on wastewater industry cost references, technical studies, actual project cost
histories and professional experience have an expected accuracy range of -30 to +50 percent and typical
end usage of budget authorization and cost control.

HDR presented capital cost, operational cost, and net present value for conventional secondary treatment
(baseline) and two enhanced secondary treatment options: (1) membrane filtration and reverse osmosis
(FM/RO) and (2) membrane filtration and granulated activated carbon (MF/GAC). A median incremental
cost was taken from the HDR report for capital and operational expenditures and scaled accordingly to
estimate the capital and operational cost for permit holders of varying capacity treatment systems in the
state of Idaho and for permit holders as a whole in Idaho.

Incremental cost estimates to upgrade existing Idaho treatment systems for enhanced treatment of PCBs
were developed for systems with treatment capacities ranging from 100 gallons per minute (gpm) to 15
million gallons per day (MGD). The tables below show the estimated costs for systems with treatment
capacities of 100 gpm, 5 MGD, and 15 MGD based on HRD’s cost estimates. These treatment costs were
then applied to the 23 industrial and 136 municipal facilities with NPDES permits in Idaho using the design
flow rate and average daily flow for each facility, as shown in Tables 1 and 2.
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COST, PERMITTING, AND TREATMENT IMPLICATIONS OF THE DRAFT POLYCHLORINATED
BIPHENYLS WATER QUALITY CRITERION

Estimated Costs for Treatment Systems

0.15 MGD/100 gpm System

Capital Expenses $15.2 M

Annual Operational Expenses |$0.62 M

5 MGD System

Capital Expenses $185 M

Annual Operational Expenses [$7.5 M

15 MGD System

Capital Expenses $360 M

Annual Operational Expenses |$14.6 M

4  CONCLUSION

The proposed change to the PCB water quality criterion would create a significant regulatory burden and
impose significant costs on the regulated community. IDEQ does not currently monitor for PCBs in
ambient surface waters, nor are industrial and municipal facilities required to monitor for and/or treat PCBs
in their discharges to surface water. However, due to the ubiquitous nature of PCBs in the environment
and the very low draft PCB criterion, enforcement of the draft PCB criterion would increase the number of
Idaho waterbodies listed as impaired due to PCBs, triggering the development of TMDLs and additional
monitoring by IDEQ. Additionally, industrial and municipal dischargers would be held accountable for
monitoring and treating PCBs in their effluent, forcing facilities to upgrade their wastewater treatment
processes facing capital and operational costs of $15 billion. The increased number of waterbody
impairments and upgrades to wastewater treatment systems would result in significant costs both to IDEQ
and the regulated community, would not result in any measurable improvement in public health (Arcadis
2015; comments being prepared simultaneously), as well as provide little certainty that ambient PCB
concentrations would, in fact, be reduced.
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COST, PERMITTING, AND TREATMENT IMPLICATIONS OF THE DRAFT POLYCHLORINATED
BIPHENYLS WATER QUALITY CRITERION
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Estimated Costs for Treatment Systems Based on Industrial Facility

Table 1:

Average Flow Permit

Average Daily Flow

Average Maximum

Design Flow Rate

25-Year Net Present

Py it Effecti Monitoring f CapE: Al | OpE:
Industrial Facility Name ermit triective Limit (million gallons | (million gallons per | Daily Flow (million | (million gallons PILCIITESETT o TEED 212 Value
End Date PCBs? (2015) (2015) :
per day) day) gallons per day) per day) (in 2015 dollars)
0.416 (Outfall 010) 0.44 (Outfall 010)
Al Fresh Meat: 2/2/2004 - - N
rmourfresh Veats 12/ 0.10 (Outfall 004) | 0.056 (Outfall 004) ° $ 46,700,000 | $ 1,900,000 | $ 61,709,100
Bennett Timber Products
8/31/2011 0.0645 (Outfall 001 - 0.018 to 0.0432 - N
Inc. /31/ (Outfall 001) ° ° $ 15,200,000 | $ 620,000 | $ 20,100,900
City of Burley Industrial
Wastewater Treatment 5/31/2014 - - - 2.4 No
Plant S 122,500,000 | $ 5,000,000 | $ 162,030,200
Cabinet Gorge Power
1/2/2007 - 0.000224 0.000336 0.0012 N
Station 12/ ° S 15,200,000 | $ 620,000 | $ 20,100,900
Chiquita Processed Foods 1/2/2007 - 0.3 - - No S 27,400,000 | $ 1,120,000 | $ 36,258,100
Clearwater Paper Lewiston
4/30/2010 - 41.2 62.5 - N
Mill /30/ ° S 360,000,000 | $ 14,600,000 | $ 475,238,200
Darigold Inc. 11/2/2004 1.7 - - - No S 108,000,000 | $ 4,400,000 | $ 142,770,000
Gem Meat Packing 11/2/2004 0.01 - - - No S 15,200,000 | $ 620,000 | $ 20,100,900
Glanbia Foods, Inc. 2/29/2009 - - 0.6 - No S 46,700,000 | $ 1,900,000 | $ 61,709,100
Hecla Mining Co - Grouse
2/12/2007 - 0.648 - - N
Creek Mine /12/ ° S 54,000,000 | $ 2,190,000 | $ 71,285,700
Hecla Mining Co - Lucky 1.7 (Outfall 001)
9/14/2008 - - - N
Friday Mine /14 2.275 (Outfall 003) ° S 160,000,000 | $ 6,500,000 | $ 211,327,300
Idaho Cobalt Project 3/31/2014 - 0.16128 - 0.216 No S 27,400,000 | $ 620,000 | $ 31,293,600
Jerome Cheese Co. 10/2/2006 - 0.497 - - No S 46,700,000 | $ 1,900,000 | $ 61,709,000
Magic Valley Produce 11/6/2008 - 0.0288 - - No S 15,200,000 | $ 620,000 | S 20,100,900
3.12 (Outfall 001) 4.16 (Outfall 001)
McCain Foods USA 10/31/2019 - 0.295 (Outfall 002) | 0.452 (Outfall 002) - No
0.216 (Outfall 004) | 0.974 (Outfall 004) $ 204,000,000 | $ 8,300,000 | $ 269,566,400
Meridian Beartrack Mine 10/31/2008 - - 0.30 to 1.05 - No S 66,600,000 | S 2,700,000 | $ 87,909,100
Minidoka Power Plant 1/8/2007 - - 0.001 0.05 No S 15,200,000 | $ 620,000 | $ 20,100,900
Pacificorp Idaho Falls Pole
10/31/2001 - - - 0.288 N
Yard /31/ ° S 27,400,000 | $ 1,120,000 | $ 36,258,100
0.403 (log yard
Potlatch Corp St. Maries Mill 10/31/2001 - runoff) - - No
0.078 li t
(cooling water) $ 46,700,000 | $ 1,510,000 | $ 57,836,300
Sorrento Lactailis, Inc. 10/31/2010 - 0.5 0.775 - No S 46,700,000 | $ 1,900,000 | $ 61,709,100
5.42 (Outfall 001)
7.76 (Outfall 002
Thompson Creek Mining (Outfa )
Compan 1/29/2007 - - 6.27 (Outfall 003) - No
pany 0.84 (Outfall 004)
1.75 (Outfall 005) $ 360,000,000 | $ 14,600,000 | $ 475,238,200
US Silver Coeur and Galena 1.66 (Outfall 001)
6/30/2012 - - - N
Mines and Mills /30/ 0.895 (Outfall 002) ° S 122,500,000 | $ 5,000,000 | $ 162,030,200
S 1,949,300,000 S 78,360,000 S 2,566,382,700
Notes:

-- = not available

Annual OpEx = annual operational expenses

CapEx = capital expenses

PCB = polychlorinated biphenyl
1. Source: USEPA. Current NPDES Permits in Idaho. Region 10: The Pacific Northwest. Available online at: http://yosemite.epa.gov/r10/water.nsf/NPDES+Permits/Current+ID1319#permits

2. Search Date: 10/15/2015

3. Capital and annual operational expenses are based off of the design flow rate and average daily flow rate, respectively. If the design and/or average daily flow rates are not available, expenses are based

off of the available flow rate.

4. Facilities with a design and/or average daily flow rate of less than 100 gallons per minute (gpm) are assumed to have capital and annual operational expenses associated with a 100 gpm facility.
5. Facilities with a design and/or average daily flow rate greater than 15 million gallons per day (mgd) are assumed to have capital and annual operational expenses associated with a 15 mgd facility.
6. For the net present value analysis, a 9% discount rate was applied over an assumed 25 year equipment life.




Table 2:

Estimated Costs for Tr y

Based on

| Facility

A Maxi Design Flow Rat 25-
L. - Permit Effective End Average Daily Flow vt.arage amrn.um t.asugn ow Rate Monitoring for CapEx Annual OpEx R esent
Municipal Facility Name Date (million gallons per day) Daily Flow (million (million gallons per PCBs? (2015) (2015) Value
8 p V. gallons per day) day) ) (in 2015 dollars)
Country Home Mobile Park WWTP 0.001 - 0.001 No 15,200,000 | § 620,000 | $ 23,388,800
Albeni Falls Dam WWTP 1/2/2007 0.0002 - 0.0018 No 15,200,000 | § 620,000 | $ 23,388,800
Red River Ranger Station USDA Forest 3/31/2017 0.0061 0.00625 0.00625 No 15,200,000 | § 620,000 | $ 23,388,800
Service WWTP
Elk Valley Subdivision WWTP 5/31/2010 - - 0.0093 No 15,200,000 | § 620,000 | $ 23,388,800
Slate Creek Ranger Station USDA 9/31/2017 - - 0.012 No 15,200,000 | § 620,000 | $ 23,388,800
Forest Service WWTP
City of Clarkia WWTP 1/2/2007 0.016 - 0.018 No 15,200,000 | § 620,000 | $ 23,388,800
USFS Forest Service Fenn Ranger 10/31/2017 - - 0.02 No 15,200,000 | $ 620,000 | $ 23,388,800
Station WWTP
Wilderness Ranglhaxater Treatment 10/31/2011 - - 0.02 No 15,200,000 | $ 620,000 | $ 23,388,800
City of Harrison WWTP 8/31/2010 0.0006 - 0.03 No 15,200,000 | § 620,000 | $ 23,388,800
City of Fruitland, Payette River WWTP | 10/31/2016 - - 0.035 No 15,200,000 | § 620,000 | $ 23,388,800
City of Winchester WWTP 2/28/2018 0.025 - 0.035 No 15,200,000 | § 620,000 | $ 23,388,800
City of Pierce Water Treatment Plant 10/31/2011 - - 0.036 No 15,200,000 | § 620,000 | $ 23,388,800
City of Orofino Water Treatment Plant|  10/31/2011 - - 0.039 No 15,200,000 | § 620,000 | $ 23,388,800
City of Laclede Water Treatment Plant 10/31/2011 - - 0.04 No 15,200,000 | $ 620,000 | $ 23,388,800
City of Bovill WWTP 3/31/2010 0.053 - 0.05 No 15,200,000 | § 620,000 | $ 23,388,800
City of Culdesac WWTP 10/31/2007 - - 0.055 No 15,200,000 | § 620,000 | $ 23,388,800
City of Dover WWTP 1/2/2007 0.029 - 0.06 No 15,200,000 | § 620,000 | $ 23,388,800
City of Richfield WWTP 3/31/2010 0.02 - 0.06 No 15,200,000 | § 620,000 | $ 23,388,800
City of Franklin WWTP 5/31/2009 0.02 - 0.0625 No 15,200,000 | § 620,000 | $ 23,388,800
Viola Water and Sewer District WWTP 2/28/2009 - - 0.063 No 15,200,000 | § 620,000 | $ 23,388,800
Riverside Independent Water District 10/31/2011 - - 0.068 No 15,200,000 | $ 620,000 | $ 23,388,800
Water Treatment Plant WWTP
City of Stites WWTP 9/30/2007 0.061 - 0.07 No 15,200,000 | § 620,000 | $ 23,388,800
Jug Mountain Ranch (planned unit 7/31/2009 - - 0.07 gfeh 15,200,000 | § 620,000 | $ 23,388,800
development)
City of Sandpoint Sand Creek Water 10/31/2011 - - 0.07795 gfs 15,200,000 | $ 620,000 | $ 23,388,800
Treatment Plant
City of Elk River WWTP 4/30/2009 0.02 - 0.08 No 15,200,000 | § 620,000 | $ 23,388,800
City of Juliaetta WWTP 4/30/2009 0.036 - 0.08 No 15,200,000 | § 620,000 | $ 23,388,800
City of Kendrick WWTP 3/31/2010 0.03 - 0.08 No 15,200,000 | § 620,000 | $ 23,388,800
City of Nezperce WWTP 3/31/2009 - - 0.09 No 15,200,000 | § 620,000 | $ 23,388,800
Carey Water and Sewer District WWTP 0.03 - 0.1 No 15,200,000 | $ 620,000 | $ 23,388,800
City of Ririe WWTP 1/1/2009 Currently not discharging - 0.1 No 15,200,000 | $ 620,000 | $ 23,388,800
City of Roberts WWTP 4/30/2009 0.03 - 01 No 15,200,000 | § 620,000 | $ 23,388,800
The Meadows LLC WWTP 7/31/2017 0.029 - 01 No 15,200,000 | § 620,000 | $ 23,388,800
City of Inkom WWTP 5/31/2010 0.076 - 0.105 No 15,200,000 | § 620,000 | $ 23,388,800
City of Riggins WWTP 8/31/2017 0.04 - 0.105 No 15,200,000 | § 620,000 | $ 23,388,800
City of Notus WWTP 9/30/2018 - - 011 No 15,200,000 | § 620,000 | $ 23,388,800
City of Craigmont WWTP 015 - 012 No 15,200,000 | § 620,000 | $ 23,388,800
Elk City Water and Sewer Association 4/30/2020 - - 0.12 No 15,200,000 | $ 620,000 | $ 23,388,800
WWTP
City of Hansen WWTP 10/31/2012 0.084 - 0.125 No 15,200,000 | § 620,000 | $ 23,388,800
City of Genesee WWTP 3/31/2010 01 - 015 No 15,200,000 | § 620,000 | $ 23,388,800
City of Hagerman WWTP 10/31/2012 - - 015 No 15,200,000 | § 620,000 | $ 23,388,800
City of Fairfield WWTP 8/21/2020 - - 0.165 No 27,400,000 [ § 1,120,000 | $ 42,195,400
Southside Water and Sewer District 0.054 - 0.165 No 27,400,000 [ § 1,120,000 | $ 42,195,400
WwTP
City of Mackay WWTP 5/31/2009 0.065 - 018 No 27,400,000 [ $ 1,120,000 | $ 42,195,400
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Table 2:

Estimated Costs for Tr y

Based on

| Facility

wetramsans|Pemstesnt] memeamton [ St [ oo 0 e[ ot | o [P
V) gallons per day) day) RCES (20 (2015) (in 2015 dollars)

City of Weiser Water Treatment Plant 10/31/2011 - - 0.185 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Troy WWTP 4/30/2009 011 - 019 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Kooskia WWTP 9/30/2007 011 - 0.198 No 27,400,000 [ § 1,120,000 | $ 42,195,400

Cities of Santa and Fernwood WWTP 5/31/2009 0.14 - 0.2 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Horseshoe Bend WWTP 11/24/2008 0.07 - 02 No 27,400,000 [ § 1,120,000 | $ 42,195,400

City of Shoshone WWTP 3/31/2010 0.09 - 02 No 27,400,000 | $ 1,120,000 | $ 42,195,400

Caldwell Housing Authority WWTP 2/2/2004 0.206 - 0.206 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Deary WWTP 4/30/2009 02 - 023 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Greenleaf WWTP 12/31/2017 - - 0.24 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Cambridge WWTP 3/31/2010 0.088 - 025 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Smelterville WWTP 9/30/2018 - - 025 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Wilder WWTP 5/31/2010 0.17 - 025 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Cottonwood WWTP 9/20/2007 048 - 0275 No 27,400,000 [ § 1,120,000 | $ 42,195,400

City of Filer WWTP 10/31/2012 0.059 - 028 No 27,400,000 | $ 1,120,000 | $ 42,195,400

Cities of Pierce and Judgetown WWTP 4/30/2009 019 - 03 No 27,400,000 [ § 1,120,000 | $ 42,195,400

City of Marsing WWTP 10/31/2020 001 - 03 No 27,400,000 | $ 1,120,000 | $ 42,195,400

City of Plummer WWTP 6/30/2017 - - 032 No 37,200,000 [ $ 1,510,000 | $ 57,135,100

Lapwai Valley WWTP 7/31/2016 - - 032 No 37,200,000 [ $ 1,510,000 | $ 57,135,100

City of Lava Hot Springs WWTP 5/31/2010 013 - 0343 No 37,200,000 [ § 1,510,000 | $ 57,135,100

Ahsahka Water and Sewer District 10/31/2016 - - 035 No 37,200,000 | § 1,510,000 | $ 57,135,100

WWTP

City of New Meadows WWTP 7/31/2018 01 - 036 No 37,200,000 | $ 1,510,000 | $ 57,135,100

City of Ashton WWTP 3/31/2019 018 - 0365 No 37,200,000 | $ 1,510,000 | $ 57,135,100

Cities of Potlatch and Onaway WWTP 3/31/2010 0.12 - 0.4 No 37,200,000 | $ 1,510,000 | $ 57,135,100

City of Council WWTP 4/30/2009 034 - 0.4 No 37,200,000 [ $ 1,510,000 | $ 57,135,100

City of Grace WWTP 10/31/2019 0.06 0 0.07 0.05 0.435 No 37,200,000 | $ 1,510,000 | $ 57,135,100

City of Bonners Ferry WWTP 10/31/2016 039 - 045 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Homedale WWTP 9/30/2018 025 - 045 No 46,700,000 | $ 1,900,000 | § 71,789,000

City of Shelley WWTP 034 - 0.46 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Fruitland, Snake River WWTP 10/31/2016 - - 048 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Glenns Ferry WWTP 12/31/2016 035 - 05 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Montpelier WWTP 5/31/2010 036 - 05 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Priest River WWTP 11/30/2016 - - 05 No 46,700,000 | $ 1,900,000 | § 71,789,000

City of Rigby WWTP 7/31/2010 06 - 053 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Weippe WWTP 10/31/2019 037010 0.424 - 0536 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Lewm""gra::ate' Treatment 10/31/2011 - - 055 No 46,700,000 | $ 1,900,000 | $ 71,789,000

Mullan WWTP South Fork Coeur 9/30/2018 - - 0.55 No 46,700,000 | $ 1,900,000 | $ 71,789,000
d'Alene River Sewer District

City of Worley WWTP 4/30/2020 0.047 - 057 No 46,700,000 | $ 1,900,000 | $ 71,789,000

City of Aberdeen WWTP 9/26/2006 043 - 06 No 54,000,000 [ § 2,190,000 | $ 82,910,200

City of Driggs WWTP 12/31/2015 031 - 06 No 54,000,000 | $ 2,190,000 | $ 82,910,200

City of New Plymouth WWTP 1/2/2007 031t00.4 - 06 No 54,000,000 [ § 2,190,000 | $ 82,910,200

City of Kamiah WWTP 7/31/2016 0.124 10 0.144 - 0613 No 54,000,000 | $ 2,190,000 | $ 82,910,200

City of Heyburn WWTP 1/8/2007 032 - 0.66 No 54,000,000 | $ 2,190,000 | $ 82,910,200

City of Parma WWTP 4/30/2009 032 - 0.68 No 54,000,000 | $ 2,190,000 | $ 82,910,200
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e ol oyl ) ey P
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City of Cascade WWTP 0.119 - 0.72 No 54,000,000 [ $ 2,190,000 | $ 82,910,200
City of Firth WWTP 3/31/2018 0.109t0 0.4 - 038 No 61,400,000 | $ 2,490,000 | $ 94,270,400
City of St. Anthony WWTP 11/30/2014 0.43 - 038 No 61,400,000 | $ 2,490,000 | $ 94,270,400
K°°te"aj’P°"3:x¥:ewe'Dismd 1/2/2007 0319 - 038 No 61,400,000 | $ 2,490,000 | $ 94,270,400
Mountain Home Air Force Base WWTP|  11/30/2014 discF:::lgite"dhtissTj‘::ace - 0.85 No 61,400,000 | $ 2,490,000 | $ 94,270,400
City of Grangeville WWTP 9/30/2010 0.7 - 0.88 No 66,600,000 | $ 2,700,000 | $ 102,241,600
Cit"°fOcrr"eﬂe'l‘(o;i;‘:igrxu‘;/F,WhiSkey 7/31/2016 05 - 0.88 No 66,600,000 | $ 2,700,000 | $ 102,241,600
City of Riverside WWTP 10/30/2016 0.13 - 0.88 No 66,600,000 | $ 2,700,000 | $ 102,241,600
City of American Falls WWTP 7/31/2019 - - 0.9 No 66,600,000 | $ 2,700,000 | $ 102,241,600
City of Gooding WWTP 5/1/2005 0.18 t00.32 - 1 No 66,600,000 | $ 2,700,000 | $ 102,241,600
City of Preston WWTP 7/31/2010 0.73 - 12 No 88,500,000 | $ 3,600,000 |$ 136,036,400
City of Hailey WWTP 7/31/2017 - 1.26 16 No 108,000,000 | $ 4,400,000 | $ 166,108,000
City of Soda Springs WWTP 12/6/2006 - - 17 No 108,000,000 | $ 4,400,000 | $ 166,108,000
City of Buhl WWTP 10/31/2012 0.54 - 18 No 108,000,000 | $ 4,400,000 | $ 166,108,000
City of Middleton WWTP 11/2/2004 03 - 1.83 No 108,000,000 | $ 4,400,000 | $ 166,108,000
Star Water and Sewer District WWTP 4/30/2020 - - 1.85 No 108,000,000 | $ 4,400,000 | $ 166,108,000
EaSte/:zt':::fyzeggﬂvv\f\:ﬁ:'ater 5/31/2019 - - 2 No 108,000,000 | $ 4,400,000 | $ 166,108,000
City of Burley WWTP 1/8/2007 13 - 2.25 No 122,500,000 | $ 5,000,000 | $ 188,542,600
Hayden Area Regional Sewer Board 11/30/2019 - - 2.4 No 122,500,000 | $ 5,000,000 | $ 188,542,600
WWTP
City of Weiser WWTP 12/31/2016 12 - 243 No 122,500,000 | $ 5,000,000 | $ 188,542,600
City of Salmon WWTP 9/30/2012 1.57 . 25 No 122,500,000 | $ 5,000,000 | $ 188,542,600
City of McCall WWTP 4/30/2008 0.664 t00.734 - 265 No 138,000,000 | $ 5,600,000 | $ 211,929,600
City of Payette WWTP 10/31/2019 - - 2.88 No 138,000,000 | $ 5,600,000 | $ 211,929,600
City of Jerome WWTP 6/30/2015 2.25 - 3 No 138,000,000 | $ 5,600,000 | $ 211,929,600
City of Sandpoint WWTP 1/5/2007 18 - 3 No 138,000,000 | $ 5,600,000 | $ 211,929,600
City of Blackfoot WWTP 8/31/2018 - - 32 No 150,500,000 | $ 6,200,000 | $ 232,459,500
City of Kuna WWTP 5/31/2014 - - 35 No 150,500,000 | $ 6,200,000 | $ 232,459,500
City of Moscow WWTP 4/14/2004 - - 36 No 160,000,000 | $ 6,500,000 | $ 245,819,700
City of Rexburg WWTP 9/11/2006 1.65 - 36 No 160,000,000 | $ 6,500,000 | $ 245,819,700
City of Ketchum WWTP 7/31/2017 - - 4 No 160,000,000 | $ 6,500,000 | $ 245,819,700
City of Meridian WWTP 11/2/2004 - - 4 No 160,000,000 | $ 6,500,000 | $ 245,819,700
Page WWTP South Fork Coeur d'Alene 9/30/2018 - - 43 No 171,000,000 | $ 7,000,000 | $ 263,483,400
River Sewer District
City of Post Falls WWTP 11/30/2019 - - 5 No 185,000,000 | $ 7,500,000 | $ 284,004,400
City of Emmett WWTP 1/2/2007 - - 5.7 No 204,000,000 | $ 8,300,000 |$ 313,599,800
City of Lewistown WWTP 1/2/2007 4.42 - 571 No 204,000,000 | $ 8,300,000 |$ 313,599,800
City of Coeur d'Alene WWTP 32 - 6 No 204,000,000 | $ 8,300,000 |$ 313,599,800
City of Caldwell WWTP 2/2/2004 5.75 - 7.78 No 244,000,000 | $ 9,900,000 | $ 374,695,300
City of Twin Falls WWTP 10/31/2014 7.13 - 8.56 No 261,000,000 | $ 10,600,000 | $ 400,948,400
City of Nampa WWTP 2/2/2004 6.6 - 11.76 No 312,000,000 | $ 12,700,000 |$ 479,707,700
City of Pocatello WWTP 8/31/2017 - - 12 No 312,000,000 | $ 12,700,000 |$ 479,707,700
City of Bosie WWTP - Lander Street 4/30/2017 - - 15 No 360,000,000 | $ 14,600,000 | $ 552,734,800
City of Idaho Falls WWTP 10/31/2017 - - 17 No 360,000,000 | $ 14,600,000 | $ 552,734,800
City of Boise WWTP - West Boise 4/30/2017 - - 2 No 360,000,000 | $ 14,600,000 | $ 552,734,800
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Table 2:

Estimated Costs for Tr y

Based on

| Facility

A Maxi Design Flow Rat 25-Year Net P
L. - Permit Effective End Average Daily Flow vt.arage amfn.um t.asugn ow Rate Monitoring for CapEx Annual OpEx ==t

Municipal Facility Name Date (million gallons per day) Daily Flow (million (million gallons per PCBs? (2015) (2015) Value

8 p V. gallons per day) day) ) (in 2015 dollars)
City of St. Maries WWTP 9/30/2012 - - - No 15,200,000 | $ 620,000 | $ 23,388,800
City of Tensed WWTP 3/31/2009 0.03 - - No 15,200,000 | $ 620,000 | $ 23,388,800
Santa-Fernwood Sewer District WWTP 5/31/2009 - - - No 15,200,000 | $ 620,000 | $ 23,388,800
City of Kamiah Water Treatment Plant 12/31/2017 - 0.0489 - No 15,200,000 | $ 620,000 | $ 23,388,800
North Idaho C tional Facilit
orth laaho Lorrectional Faciiity 0.03 - - No 15200000 [ § 620,000 |$ 23,388,800
WWTP
Joint School District #171 (Timberline
2007 . 4 X 2. - - N 15,2 2 2

High School) WWTP 9/30/200 0.0000646 to 0.00323 o 5,200,000 | $ 620,000 | $ 3,388,800
City of Rockland WWTP 1/8/2007 0.13 - 0.041 to 0.062 No 15,200,000 | $ 620,000 | $ 23,388,800
8,983,300,000 $ 365,500,000 $ 13,809,652,800

Notes:
-- = not available
WWTP = wastewater treatment plant

Annual OpEx = annual operational expenses

CapEx = capital expenses
PCB = polychlorinated biphenyl

1. Source: USEPA. Current NPDES Permits in Idaho. Region 10: The Pacific Northwest. Available online at: http://yosemite.epa.gov/r10/water.nsf/NPDES+Permits/Current+ID13194#permits

2. Search Date: 10/15/2015

3. Capital and annual operational expenses are based off of the design flow rate. If the design flow rate is not available, expenses are based off of the available flow rate.
4. Facilities with a design flow rate of less than 100 gallons per minute (gpm) are assumed to have capital and annual operational expenses associated with a 100 gpm facility.

5. Facilities with a design flow rate greater than 15 million gallons per day (mgd) are assumed to have capital and annual operational expenses associated with a 15 mgd facility.

6. For the net present value analysis, a 5% discount rate was applied over an assumed 25 year equipment life.
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