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April 18,2014 601 West Riverside, Suite 1100
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Paula Wilson

IDEQ State Office
Attorney General's Office
1410 N. Hilton

Boise, ID 83706

RE: Docket No. 58-0102-1201 - Negotiated Rulemaking
Idaho’s Fish Consumption Rate
Probabilistic Risk Assessment

Dear Ms. Wilson:

Clearwater Paper Corporation appreciates the opportunity to comment on Docket 58-0102-1201 as
noted above. We value the work the Idaho Department of Environmental Quality (IDEQ) has done on
this very important matter. We have attended previous meetings and look forward to participating
further as this rulemaking proceeds.

During the April 2, 2014, rulemaking meeting, one agenda item was a presentation by Dr. Paul
Anderson outlining the application of a software tool that uses probabilistic risk assessment (PRA) in
setting human health water quality criteria (HHWQC). We are offering the following comments in
support of IDEQ using a PRA approach to revise Idaho’s HHWQC.

Monte Carlo (i.e., PRA) methods are well accepted tools in technical decision making — The
use of simulation approaches to solving mathematical and physical problems dates back to the
late 1940’s when it was developed at Los Alamos National Laboratory to assess nuclear safety.
Simply stated, simulation approaches (also named Monte Carlo methods) make use of tracking
the outcome of discrete events by simulating their probability of occurrence. By keeping track
of various outcomes by using known probability distributions for pertinent inputs, the result of
an analysis yields statistically based outcomes — not just one number but rather a distribution
of outcomes.

NASA was an early user of Monte Carlo methods in predicting the failure rates of space
mission subsystems and components. By simulating the reliability of rocket subsystems, the
reliability and performance aspects of an entire mission can be assessed statistically (see
Attachment A for an example). IBM has also been a long-time leader in the use of Monte Carlo
methods (Attachment B).



Probabilistic methods have also been used for several decades when evaluating the potential
human health risks associated with chemicals in the environment. The United States
Environmental Protection Agency (EPA) started publishing guidance on using PRA more than a
decade ago® as did the State of Oregon®. So while application of PRA to derive HHWQC is
relatively new, using a probabilistic approach (i.e., a Monte Carlo approach) to establish
HHWCQ criteria makes use of the historically proven and generally acceptable approach of
simulation science. Other states, such as Florida, have used this method in the context of
setting fish consumption/water quality rules®.

PRA represents the best science in assessing risk — Humans are physically different from one
another and have very distinct water and food consumption patterns. Some healthy adults
weigh 90 pounds while some weigh 300 pounds. Some adults drink three to four liters of
water a day while some drink little or no water. Some adults don’t eat fish while some eat a
lot. By evaluating these types of differences among humans, the risk of drinking surface water
and eating fish from Idaho rivers and lakes can utilize the best scientific approach to make
informed risk policy decisions.

Looking at the risk from eating fish, high consumers will always have more risk from this
pathway than other consumers who do not eat fish. Similarly, those who eat more beef will
always have more risk from that pathway than others who eat less beef. In order to make an
informed and reasonable decision about a population of fish consumers, the best choice is
using a methodology to predict risk across the entire population. This result is inherent when
using PRA to develop HHWQC in Idaho — a PRA approach is clearly the most comprehensive
and accurate science-based tool to assess risk.

Using PRA to set HHWQC would represent all Idaho fish consumers — When IDEQ completes
their fish survey work, their results can be statistically combined and a distribution of fish
consumption can be developed for the entire state. This distribution can be easily represented
mathematically and used in a PRA analysis to evaluate the risks to all Idaho fish consumers —
those who eat very little fish as well as those that eat many fish meals a week. Implicit in the
use of PRA for developing HHWQC is the representation and modeling of all fish consumers in

! USEPA. Guiding Principles for Monte Carlo Analysis. U.S. Environmental Protection Agency, Risk Assessment
Forum, Washington, DC, EPA/630/R-97/001, 1997. USEPA. 2001. Risk Assessment Guidance for Superfund:
Volume Il - Part A, Process for Conducting Probabilistic Risk Assessment. EPA 540-R-02-002. Office of Solid Waste
and Emergency Response, U.S. Environmental Protection Agency, Washington, DC. December.

2 Oregon Department of Environmental Quality (ODEQ). 1998. Guidance for Use of Probabilistic Analysis in
Human Health Risk Assessments. Waste Management and Cleanup Division, Oregon Department of
Environmental Quality. Interim Final. January, updated November.

® Florida Department of Environmental Protection (FDEP) 2014. DRAFT Technical Support Document: Derivation
of Human Health-Based Criteria and Risk Impact Statement. February 2014. Florida Department of
Environmental Protection, Division of Environmental Assessment and Restoration.



Idaho. Please note Attachment C which is a visual representation of how fish consumers
would be included when a state uses PRA in setting their HHWQC. This result is similar to work
done in Florida using PRA. Note that the range of fish consumption that went into this PRA
assessment was from essentially zero up to several hundred grams per day — all modeled in
proportion to the expected number citizens from a state population eating that amount of
fish. This same type of approach result would be available if Idaho uses PRA to set its HHWQC.
An output of the PRA method will be a statistical basis for the distribution of fish being
consumed in Idaho and would be developed from the current survey work by IDEQ and EPA.
Basing HHWQC on a distribution of consumers would facilitate a better scientific
understanding of risk and an informed establishment of rational and workable public policy
choices.

Using PRA facilitates transparency in HHWCQ rulemaking — As noted above, using PRA puts a
spotlight on all technical and public policy choices. Unlike a deterministic approach where

“one size fits all” and the conservatism of several input parameters is compounded drastically,
PRA allows a specific assessment of all the technical inputs and risk outputs and generates risk

profiles for the entire population.

The PRA software tool (provided to IDEQ separately) was designed and developed to make
transparency a focus. Each technical input and policy input is easily verified and a sensitivity
analysis can be part of any HHWQC rule making.

Rather than make multiple highly conservative assumptions (e.g., daily drinking water intake,
fish consumption rate) which leads to an unknown, but likely far greater level of protection
than assumed by the HHWQC, PRA implicitly determines a range of outcomes that facilitate
making reasonable public policy choices for risk to an entire population.

PRA determines the risks for all Idahoans — As noted several times above, the use of PRA in
setting Idaho HHWQC inherently calculates the risk to all Idahoans. Note Attachment D that is
a sample output consistent with how a PRA tool would assess risk. If Idaho uses a PRA
approach to set HHWQC, the risk results for all carcinogens and non-carcinogens will be
available in results similar to Attachment D. Florida, for carcinogens, elected to protect the
population “mean” at an excess lifetime cancer risk of 1x10°® (one in one million) and
concurrently protect the 90" percentile of the population at 1x10° (one in one hundred
thousand) and additionally confirm highly exposed sub-populations were at no greater risk
than 1x10™ (one in ten thousand). This type of policy choice is easy to verify when using PRA
and is easily estimated. A similar approach for non-carcinogens is also facilitated by using PRA.

The risk to all Idahoans is inherent and transparent if IDEQ chooses to use a PRA approach to
set HHWQC.



In summary, Clearwater Paper urges IDEQ to use PRA when updating Idaho HHWQC with a new fish
consumption rate. PRA is the best available science, assesses the risks of all Idahoans, is easily
conducted using the software tool provided separately to IDEQ or using other available software,
avoids an excessive compounding of conservatism and makes transparent the basis of the science and
public policy choices used to establish HHWQC.

Please contact me at 509-344-5956 or marv.lewallen@clearwaterpaper.com with questions.

Sincerely yours,

L@v A lwl—

Marv Lewallen
Vice President — Environmental, Energy & Sustainability

C: Don Essig

w/ Attachment A
Attachment B
Attachment C
Attachment D
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Learning About Ares | from Monte Carlo Simulation

John M. Hanson® and Charles E. Hall?
NASA Marshall Space Flight Center, Huntsville, AL 35812

This paper addresses Monte Carlo simulation analyses that are being conducted to
understand the behavior of the Ares | launch vehicle, and to assist with its design. After
describing the simulation and modeling of Ares I, the paper addresses the process used to
determine what simulations are necessary, and the parameters that are varied in order to
understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish
a significant group of design customers with data needed for the development of Ares | and
of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of
many of the outputs are described. Products discussed in this paper include those that
support structural loads analysis, aerothermal analysis, flight control design, failure/abort
analysis, determination of flight performance reserve, examination of orbit insertion
accuracy, determination of the Upper Stage impact footprint, analysis of stage separation,
analysis of launch probability, analysis of first stage recovery, thrust vector control and
reaction control system design, liftoff drift analysis, communications analysis, umbilical
release, acoustics, and design of jettison systems.

Nomenclature

=angle of attack

= Boost Deceleration Motor

= sideslip

= Crew Module (part of Orion)

= degrees of freedom

= Flight Performance Reserve (includes FPR at nominal mixture ratio and fuel bias)
= First Stage

= Global Reference Atmosphere Model
= heavy/slow

= International Space Station

= Ares | Upper Stage engine

= Launch Abort System

= light/fast

= liquid hydrogen

LOX or LO2 = liquid oxygen
MAVERIC = Marshall Aerospace Vehicle Representation in C 6DOF simulation

MBLI = moment-based load indicator

MECO = main engine cutoff

PEG = Powered Explicit Guidance

PID = proportional-integral-derivative

PMBT = Propellant Mean Bulk Temperature

POST = Program to Optimize Simulated Trajectories
QorQbar  =dynamic pressure

Qalpha/Qbeta = dynamic pressure times angle of attack and dynamic pressure times sideslip
Q*alphaTotal = dynamic pressure times total angle of attack

RCS
RSS

= Reaction Control System
= root sum square

! Aerospace Engineer, Flight Mechanics & Analysis Division/EV40, AIAA Member.
2 Aerospace Engineer, Control Systems Design & Analysis Branch/EV41, non-AIAA Member.
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TVC = Thrust Vector Control
us = Upper Stage

I. Introduction

The Ares | launch vehicle is currently planned for first test flight in 2013, with crewed flights to the International
Space Station (ISS) one or two years later. The crew will fly onboard the Orion spacecraft that Ares | takes to orbit.
The Ares | launch vehicle is currently at the Preliminary Design Review stage. The current schedule is subject to
delay depending on the funding profile available (and has already been delayed due to budget considerations). Ares
| is being designed so that, some time later, it will also be able to take Orion into a low-inclination orbit for
rendezvous with the Ares V-delivered Earth Departure Stage and Lunar Surface Access Module (which one would
be launched first has not been determined). The two missions (ISS and lunar) have differing payload requirements
for Ares I, which leads to slightly different flight profiles and trajectory attributes. Ares | uses a Shuttle-derived 5-
segment solid rocket booster, with a new Upper Stage that has an Apollo-derived J-2X engine. These two stages are
used to insert the Orion into a -11x100 nm orbit at a mean altitude of 70 nm. Orion uses its on-board propulsion to
circularize at 100 nm and to proceed on its mission from there. Since the perigee is negative, the Ares Upper Stage
naturally burns up upon re-entry with the debris falling in the Indian Ocean.

A large NASA effort is ongoing for design of the Ares I. Contractors ATK (First Stage), Boeing (Upper Stage),
Pratt & Whitney/Rocketdyne (Upper Stage Engine), and Boeing (Instrument Ring) are supporting the design effort
along with NASA support contractors. During vehicle design, a high-fidelity 6-degree-of-freedom simulation is
where the vehicle is functionally integrated in order to determine whether the design will be able to achieve the
goals envisioned. This simulation resides within the guidance, navigation, and control discipline areas, because the
simulation is used to develop the guidance and control approaches and to demonstrate that they can fly the
integrated vehicle successfully in the presence of expected navigation uncertainties and vehicle and environmental
variations. In order to demonstrate that the vehicle will be successful, the simulation must be exercised in ways that
demonstrate how much the flight can vary. For example, what is the trajectory that will lead to the worst structural
loads that the vehicle will have to withstand? What trajectory will lead to the worst aerothermal environments?
And so on.

One way to develop “design” trajectories (or worst-case trajectories for design) is to vary individual parameters
between their extremes, and to stack them with each other in single simulations, to see how the vehicle flies as a
result. A problem with this approach is that it is quite difficult to determine how statistically bad the resulting
simulation is. Another approach, which is more available currently than in the past due to computer speed, is to run
Monte Carlo simulations. In this approach, everything that is known to vary is randomly varied across its range and
a large number of simulations are run. After the simulations are finished, the results show statistically what the
various parameters do. A user may choose the 99% value for design, or the 95% value, or the 99.73% value with
90% confidence (also called 10% consumer risk), as desired depending on how much design surety is required.

The approach used in this paper is to run the MAVERIC (Marshall Aerospace Vehicle Representation in C)
simulation in Monte Carlo mode to answer the necessary design questions. Besides developing the simulation
capability for the launch vehicle, and determining the vehicle and environmental uncertainties appropriate for the
simulations, it is necessary to decide what vehicle models to use for the baseline that is being varied. At an early
design stage, vehicle models are not what they will be when they are built and tested, so it is critical that heavier and
slower models be simulated (for determining parameters such as payload performance and tower clearance) as well
as lighter and faster models (for maximum aeroheating and structural loads, among other needs). Another reason to
model more sluggish and more sporty vehicle models is that manufactured components will differ in ways that can
be measured prior to launch. Engines vary and will be put on test stands prior to vehicle assembly, masses vary and
components will be weighed, and solid propellant grain varies and will be tested.

When it comes to failures, with crewed systems, abort capability is necessary. Understanding how the vehicle
behaves dynamically in situations where a failure causes dynamic deviation is another necessary analysis. Knowing
what will happen depends on understanding how the trajectory and attitude can vary, and again Monte Carlo
simulations offer a reliable approach. These simulations help to evaluate various abort triggers for use as abort cues,
and also help to determine how much time is available for escape.

This paper discusses first the simulation and modeling of Ares | used in MAVERIC, without describing each
model in detail. Next the paper describes the uncertainty modeling and the determination of what simulations are
needed (along with the corresponding vehicle models). The customers for the Monte Carlo results are listed,
followed by an overview of many of the products and their uses.
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Il. Simulation and Modeling of Ares |

The MAVERIC simulation models the Ares | launch vehicle in high fidelity, and the fidelity level will increase
as the project progresses. The guidance and control algorithms are modeled as they are intended to be incorporated
into the flight software. The control approach is described elsewhere*. In brief, the guidance uses an open-loop
phase (pitch, yaw, and roll versus altitude) followed by a closed-loop design. An optimization procedure” and linear
tangent steering were evaluated for the closed-loop design. The current baseline is the Shuttle version of linear
tangent steering, Powered Explicit Guidance® (PEG). Comparison between the two closed-loop approaches did not
show any advantages for the more complicated optimization approach. Some reasoning for choosing PEG as
opposed to a more advanced guidance appears in Ref. 6. Another reason that advanced methods were not chosen for
guidance or for flight control is that the Ares | launch vehicle is intended to use technology advances only where
necessary. Guidance functions adapt to adjust the trajectory plan for the changing azimuth through the launch
window. A steering function acts between the guidance and control to make sure that the guidance commands will
not result in large attitude or attitude rate errors to the control system and that the rate and acceleration commands to
control will be limited. This is critical in order to keep from causing actuator hard-over commands from the flight
control that could lead to loss of stability. By staying within the control limits, overshoot of the desired attitudes is
also minimized. The flight control design for pitch and yaw is a classical proportional-integral-derivative (PID)
controller that uses rate gyros on multiple vehicle locations along with mathematical filters in order to control the
vehicle in the presence of its vibrational modes. The control design for the reaction control system (RCS) is a phase
plane design.

Navigation is currently modeled with sensor models that have initialization error and accelerometer and gyro
errors that cause cumulative state vector error as the vehicle ascends into orbit. The error parameters included in the
current model will be listed later in the paper. More advanced navigation models are being prepared for upcoming
versions of MAVERIC. Ares | navigation is discussed in more detail in Ref. 7. MAVERIC contains models of the
propellant slosh and of the flex (vibrational) behavior that have been checked against independent models. The
thrust vector control dynamics models are based on Shuttle experience applied to Ares I. A dynamic thrust vector
uncertainty model is also included. Propulsion modeling is as furnished by the Ares | propulsion experts. Since the
First Stage uses Shuttle-heritage capabilities, the modeling of the First Stage propulsion is very well known.
Besides modeling the overall thrusts and flow rates during the two stages, MAVERIC models in detail the
uncertainties in shutdown for the First Stage and in startup and shutdown for the Upper Stage. This is because the
modeling if these is very important to analyzing the success of stage separation and of orbit insertion accuracy and
attitude control after insertion.

For stage separation, MAVERIC models the various components (booster deceleration motors, propellant
settling motors, booster tumbling motors, and the dimensions of the vehicle components that must separate) along
with uncertainties in the performance of the different components, the direction their thrust is pointing, various
lateral and axial forces and torques that interact with the vehicle at this time, and failure cases associated with each
component. MAVERIC outputs clearances during the simulation so that the success of the stage separation event
can be examined. MAVERIC models the J-2X plume effects on the First Stage after separation, to support analysis
of First Stage recovery. Stage separation is also currently being modeled in an independent simulation called
CLVTOPS.

MAVERIC models time latencies and RCS behavior. Integration step size is currently 0.005 seconds, in order to
correctly model the vibrational modes effects on the GN&C. MAVERIC does not model the sub-system behavior of
the various systems, but rather only models the behavior of systems that lead to effects on the overall vehicle
dynamics. For example, the voting logic within the flight computers is not modeled, but the error in output that
ultimately influences the vehicle is modeled. MAVERIC does not model aeroelastic effects. MAVERIC models the
vehicle as a rigid body in terms of generating forces and torques (although the effects of vehicle flex on the flight
control are modeled). Aeroelastic effects are evaluated by the structural analysis discipline. MAVERIC models
light to moderate wind gusts using the Global Reference Atmosphere Model (GRAM) & 2007. Extreme wind gusts
are taken into account by the structural analysis discipline.

I1l. Uncertainties

Uncertainties can be divided into two categories: those that are unknown now but will be known before flight
day, and those that are unknown when the vehicle launches. Items in the first category include a certain portion of
the First Stage burn rate uncertainty (the grain used in the flight vehicle is tested before flight), some mass
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uncertainty (including manufacturing uncertainty since components will be weighed, and including some current
levels of design mass uncertainty), a portion of the axial force coefficient (assuming that wind tunnel tests and
higher fidelity vehicle models improve on knowledge of this parameter), and some of the uncertainty in J-2X
performance (the engine will be hot-fired prior to flight).

Parameters in the flight day unknown category (the second category) include remaining unknowns for the items
in the first category, navigation uncertainties, dynamic thrust direction uncertainties, and many others. Although all
the aerodynamic parameters have larger uncertainty now than they will on flight day, only axial force coefficient
affects the overall payload performance and items such as maximum dynamic pressure directly. The rest of the
aerodynamic parameters are primarily of interest to control system design as far as dynamic simulation is concerned.
The control system must be able to control the vehicle with the full range of aerodynamic parameter uncertainty,
whether the vehicle model is heavy/slow or light/fast. For this reason, the aerodynamic parameters other than axial
coefficient are all considered to be flight day unknowns.

Since a mean monthly wind profile is being used to design Ares | trajectories and since the payload will not be
changed each day after the wind is measured several hours before launch, the wind variations within a month are
considered to be “flight day unknowns”. Similarly, the First Stage Propellant Mean Bulk Temperature (PMBT)
variation during a month is considered as a flight day unknown. Also, since the plan is to fully load the propellant
tanks and not offload based on some knowledge of J-2X mixture ratio uncertainty derived during the engine test, all
of the mixture ratio uncertainty is considered as flight day uncertainty and goes into calculation of the flight
performance reserve (FPR), that amount of extra propellant needed to ensure the orbital delivery is made even with
all the uncertainties included. Table 1 lists the uncertainties that are known before launch and that can be used in the
trajectory design. Table 2 lists the parameters that are modeled with flight day uncertainty. Some parameters
appear in both tables because, of the total uncertainty, some will be determined before flight. The list of
uncertainties covered continues to increase as the design matures.

Table 1. Deterministic Parameters (Known Prior to Flight Day). Includes parameters that still have some
uncertainty on flight day but are known better by then than they are now. Also includes parameters that vary from
vehicle to vehicle but are known better once the vehicle is assembled.

First Stage burn rate J-2X thrust J-2X specific impulse
Axial forebody coefficient First Stage dry mass Interstage dry mass
Upper Stage dry mass J-2X mass Orion mass
Program manager’s reserve

1VV. Vehicle Model Choices and Monte Carlo Simulations

In order to decide what combination of vehicle models, missions, months of launch, and any other parameters
are needed for obtaining the necessary results, previous Monte Carlo runs were used, run for each month of the year,
for both missions, and for other differing conditions. Three target parameters were identified for analysis.

1. Performance. What combination yields the lowest vehicle performance? This case drives the derivation
of the FPR, since other cases would result in more fuel left over than this case. The goal is to find the
worst combination of heavy and slow (underperforming) that might make up a known vehicle
combination. This case also drives the liftoff drift analysis since it is most sluggish in leaving the launch
pad. This vehicle is called H/S in the following discussion.

2. Loads. What combination yields the lightest and fastest vehicle that we might need to fly? This case
drives the highest maximum dynamic pressure, the highest structural loads, the highest acceleration, the
highest heat rates, the fastest liftoff for umbilical release analysis, worst-case aborts within the
atmosphere, and probably the worst-case First Stage gimbal angles and rates. This vehicle is called L/F
in the following discussion.

3. Upper Stage acceleration. The Orion spacecraft design has panels that encapsulate the Service Module
during atmospheric ascent and carry structural loads during this portion of flight. These panels are
jettisoned once the high heating part of ascent is finished, and the rest of the Service Module/Spacecraft
Adapter has to carry the remaining structural load for Upper Stage flight into orbit. The highest axial
acceleration for Ares | is during First Stage flight, but for this particular purpose we need the highest
acceleration that occurs during Upper Stage flight. This occurs with a light/fast Upper Stage and a light
payload along with a heavy/slow First Stage (which leads to the Upper Stage having to do more of the
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work and results in a lower amount of remaining propellant and thus an even lighter Upper Stage). This
vehicle model is called “hybrid” in the following discussion.

Table 2. Flight Day Uncertainty Parameters

First ~Stage internally | TVC-induced roll torque Dynamic thrust vector | Flex  frequency  (first
generated roll torque uncertainty mode) and amplitude
Uncertainty in mode shape | Mode slope at the gimbal | Slosh  mass, location, | First Stage Propellant

point

damping, and frequency

Mean Bulk Temperature
PMBT (variation within
the month)

First Stage burn rate First Stage loaded | First Stage specific | First Stage tailoff model
propellant impulse

First Stage engine location | First Stage engine | J-2X mixture ratio, thrust, | J-2X thrust misalignment
alignment and specific impulse and engine location

J-2X shutdown transient | J-2X ignition transient | J-2X shutdown delay time | J-2X shutdown side load

thrust profile

thrust profile

Effect of engine inlet | Variation of engine inlet | Loaded propellant (oxygen | Total stack aerodynamics
pressure and temperature | pressure and temperature | and hydrogen) (axial, normal, lateral,
on engine parameters (oxygen and hydrogen) pitch/yaw/roll moments)

Upper Stage stack | Navigation initialization | Accelerometer errors (bias | Gyro errors (bias
aerodynamics  (moment | (position, velocity, and | repeatability, scale factor, | repeatability, scale factor,
and force terms) attitude) misalignment, noise, each | misalignment, random

axis) walk, each axis)
Atmospheric density, | Winds aloft RCS fuel per tank, thrust, | Boost Deceleration motors

temperature, pressure

flow rate, plume effects,

BDM (burn rate, PMBT,

moment arm, each stage ignition interval, loaded
propellant, thrust vector
alignment)
Mass properties: | Uncertainty in J-2X plume | Propellant settling motors | Thrust  vector  control
uncertainties in all dry | effect on FS after | (burn rate, PMBT, loaded | (scale factor, damping
masses, center of mass, | separation propellant, ignition | ratio, position limit, rate
inertia interval, thrust alignment) | limit, position error at
startup)
J-2X TVC: time to gimbal | J-2X engine inertia Boundary of J-2X engine | Upper Stage TVC
capability nozzle while in interstage, | misalignment

including
and vibration

misalignment

Time delay to
separation

stage

First stage nozzle pointing
error when in null position

Center of mass/center of
percussion uncertainty

Side force from First Stage
thrust at staging

Table 3 shows the combinations of models for obtaining the desired results, along with what each run is
targeting. Flying to different parts of the rendezvous launch window does not in general affect the flight parameters
significantly. Since the lunar mission has a 90-minute design launch window, an extra case must be run in order to
understand the effect of the launch window on the Upper Stage impact footprint. The 10-minute ISS launch window
does not have a significant effect on the impact footprint. The ISS mission has a lighter payload, so its loads and
heating parameters are typically slightly worse than for the lunar mission. In some previous studies, August was the
worst month for dynamic pressure, but July was the worst for heating, so both are on the list. For each Monte Carlo
set, 2000 random simulations were made.

The approach to designing the three different vehicle models was to take the various parameters that are in the
pre-flight-determined category (Table 1) and to determine the partial derivative of the item of interest with respect to
each parameter. For example, for First Stage burn rate, the partial of payload with respect to burn rate supplies the
necessary information for the H/S model, the partial of maximum dynamic pressure with respect to burn rate
supplies the L/F model, and the partial of Upper Stage maximum acceleration with respect to burn rate supplies the
hybrid model. It should be noted that worst dynamic pressure does not necessarily imply the other goals of the
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light/fast model will be met. For example, the worst-case vehicle model for maximum acceleration may not be the
same as that for maximum dynamic pressure. This nuance was not considered for the current vehicle modeling, but

will be in the future.

Table 3. Combinations of Vehicle/Mission Models for Generating Monte Carlo Worst Cases

. Lau
. Veh .M'S Mont nch What is the need? . I_dent
icle | sion h . ifier
window]
L/F ISS Aug Clo Max Q, max acceleration, FS footprint TD6-
ust se A
L/F Lun Febr Clo Dynamic pressure*total angle of attack, MBLI TD6-
ar uary se B
H/S Lun Febr Clo Worst performance, FPR, liftoff drift, US footprint TD6-
ar uary se C
H/S Lun Febr|  Ope Worst performance, FPR, liftoff drift, US Footprint TD6-
ar uary n D
hybl gg| Febri Ope Worst US acceleration TD6-
rid uary n E
Febr Clo Dynamic pressure*total angle of attack, MBLI, compare with lunar, TD6-
L/F ISS :
uary se US footprint F
L/F ISS July nOpe heat rate, compare with L/F August -CI;DB'
L/F alr_un u?{ug nOpe Max Q, max acceleration, comparison between ISS and lunar LDB'

Table 4 shows the effects of the various pre-flight-determined quantities on the parameters of interest for the
three vehicle models described above. It is easy to see which parameters have a large impact on the vehicle models.
It is also easy to see that some of the parameters could be zeroed out without much effect. The J-2X performance
parameters affect the maximum dynamic pressure because the entire trajectory is re-optimized to take the model

changes into account.

Table 4. Parameter Effects for Vehicle Model Definitions (Heavy/Slow, Light/Fast, and Hybrid)

Parameter

Payload effect for 1 sigma
positive variation (Ib)

Maximum dynamic
pressure effect for 1 sigma
positive variation (psf)

Upper Stage maximum
accel. effect for 1 sigma
positive variation (g)

First Stage burn rate 317 15.93 -0.009
J-2X thrust 273 1.75 0.014
J-2X specific impulse 228 -0.06 -0.007
Drag coefficient -153 -4.89 0.004
First Stage mass -78 -0.81 0.002
Interstage mass -3 -0.03 0.000
Upper stage mass -97 -0.17 -0.000
J-2X mass -28 -0.05 0.000
Ares margins—ISS/lunar | ssumed allocated to mass 1.44/-1.37 -0.0008/-0.0005
for heavy vehicle model
Assumed required to take
Program reserve— to orbit for heavy vehicle -0.54/-0.75 -0.0012/-0.0018
ISS/lunar
model
Orion mass—ISS/lunar Max'm“murseeqd”'md mass -1.02/-0.51 -0.0023/-0.0004
0 —
99.73% RSS effect 1,437 (lunar only) 47.0146.9 0.052/0.052

I1SS/lunar
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The vehicle model chosen is one that yields a 99.73% variation in the parameter of interest from the mean value.
Since this vehicle model is made up of a number of variations, there is a multi-dimensional choice as to what
combination of parameters is chosen that causes the 99.73% variation. Once the 99.73% value is determined (Table
4), the vehicle model that leads to the most likely vehicle is the one chosen. Any parameters with uniform
distributions are taken at their maximum values, since each value is equally likely. Taking the maximum value for
the uniformly distributed parameter means that Normally-distributed parameters do not need to contribute as much
to the overall result, and so are closer to nominal values. The maximum-likelihood value is then taken for the
Normally-distributed parameters, which leads to the parameters that have the largest influence on the result being
the ones that are dispersed the most. The result in each case is confirmed by designing a trajectory for the new
vehicle model in the trajectory design tool (Program to Optimize Simulated Trajectories—POST).

V. Customers
Table 5 lists a partial set of current customers for the Monte Carlo results.

Table 5. Monte Carlo Dispersion Customers

Customer Uses Customer Uses

Aerothermal Plot files (Mach, alpha, beta, etc.); US | Thrust Maximum gimbal angles, gimbal rates,
re-entry also Vector actuator power

Control

Environments | Development and verification of | Acoustics Uses standard dispersion output
winds modeling

First ~ Stage | First Stage separation states to | Main Results of flight performance reserve

Reentry initialize analysis Propulsion analysis; acceleration and fuel dispersions

System

Flight FPR, orbit insertion accuracy, flight | Orion Loads | Trajectory data at Mach 1, trajectory data

Mechanics control analysis, GN&C requirements at max Q, trajectory data at all high
values, upper stage reentry footprint, dynamic pressures for loads evaluation,
navigation accuracy, guidance and trajectory data at various times for
analysis, input for liftoff drift, abort analysis.
umbilical removal, adequacy of
RCS/TVC designs

Venting Plot files; time history plots of alpha | Ares Stage Stage separation clearance dispersions
and beta as function of Mach. Alpha | Separation
versus beta ellipses

Abort Dispersed states at max dynamic | Aerody- Variation of aerodynamic angles for

Trajectories pressure, First Stage, LAS jettison, | namics which various data are needed
etc. Panel

Abort  Test | Mach, alpha, beta, altitude, axial | Orion Altitude and acceleration as function of

Booster accel, dynamic pressure at max-drag, Mach for dispersions and reference

Project max-dynamic pressure, FS separation, trajectories, for acoustics. Heat rate at
and LAS jettison flight conditions LAS jettison, conditions at Service

Module panel jettison.

RCS Acceleration angles with respect to | Structural Qalpha/Qbeta ellipses at various altitudes;
body axes, confirmation that RCS | Loads list of specific 99.73% trajectory results;
design is adequate, requirements if not MBLI results

ESM Fairing | Nominal and dispersed data at | Range Trajectory envelopes; velocities on the
Encapsulated Service Module fairing | Safety envelopes
jettison

Fuel slosh Slosh amplitude and time history plots | Communi- Azimuth and elevation to Tracking and

cations Data Relay satellites

For some customers where it is not clear which of the Monte Carlo cases provides their worst case, all
trajectories are made available and these customers pick what is worst for them by examining outputs of interest.
For example, the aerothermal analysis discipline runs the trajectories from the Monte Carlo runs through their
thermal evaluation model while examining the heating on various body points. Similarly, for First Stage recovery, a
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separate 6DOF Monte Carlo simulation is used to model the random behavior of the booster as it is re-entering the
atmosphere. The large set of state vectors resulting from the post-stage separation point serve as initialization states
for the re-entry simulation. There is no current single parameter that can be used to define the worst case for First
Stage recovery. Orion uses the Monte Carlo results to determine the statistics of normal vehicle conditions that the
spacecraft might need to abort from. The overall statistical results provide the bounds for which the Launch Abort
System should be qualified. Other discipline areas, such as acoustics, take the output statistics and examine them for
cases that are worst for acoustic design (in this case, load indicators, accelerations, and aerodynamic angles as a
function of Mach number). For the various staging or jettison events (stage separation, ullage settling motor
jettison, encapsulated service module panel jettison, launch abort system jettison, and Orion separation), the Monte
Carlo results provide the range of conditions for which successful clearance and operation must be demonstrated.

VI. Analyses

A. Load Indicators

All results below are for a particular set of vehicle design parameters at a stage in the design process and will
change as the design is refined. Any parameters that are judged to be outside the acceptable range will be worked
during the design process. Figure 1 shows the maximum dynamic pressure variation for the nominal trajectories for
the dispersion vehicle models. It can be seen that this indicator is significantly higher for some vehicle/mission
combinations than it is for others. Figure 2 shows the variation of maximum dynamic pressure during Monte Carlo
runs for the worst case. It is interesting to see how large a Mach range there is for the maximum dynamic pressure.
Figure 3 shows the variation of maximum dynamic pressure times total angle of attack (Q*alphaTotal), a key
structural load indicator, for the worst case. Note that the highest dynamic pressures are seen in the summer, but due
to wind variations the highest Q*alphaTotal is in February. Also of interest is that the highest Q*alphaTotal is quite
a bit larger in 6DOF versus 3DOF simulation. 3DOF simulation captures all the wind variations, but assumes the
vehicle is always pointed in the desired direction. When the flight control is included, the high dynamic pressure
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Figure 1. Maximum Dynamic Pressure Variation for Dispersion Nominals. The list of trajectories is in
Table 3.
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Max Dynamic Pressure vs. Mach
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Figure 2. Maximum Dynamic Pressure versus Mach for Highest Dynamic Pressure Case (L/F ISS July)
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Figure 3. Variation in Peak of Dynamic Pressure times Total Angle of Attack for Worst Case (L/F Lunar
February)
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and strong winds make it difficult to fly without attitude error. A degree or two of attitude error at a high dynamic
pressure results in a substantial increase in Q*alphaTotal for the worst cases. A more refined load indicator, called
the moment-based load indicator (MBLI), has been derived as a measure of the dynamic load on each portion of the
vehicle. MBLI envelopes are shown in Figure 4. The MBLI is normalized so that a value of about 1.0 would imply
the vehicle exceeds its load limits and safety margin.

—— TDBA
0.9 TDBE[

TDEC
—— TD6O|
TDBE
TD&F
TD&G
TD&H

03

MWax MEBLI {over all 67 stations)

0.1

0 05 1 15 2 25 3 35 4 45 5 55
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Figure 4. Maximum Moment-Based Load Indicator (MBLI) for all 67 Vehicle Locations and all 2000
Monte Carlo runs

B. Launch Probability due to Winds Aloft

These results can be used to estimate launch probability due to winds aloft. Suppose the current value of
Q*alphaTotal being used for structural design is 6400 psf-deg. If it is assumed that the winds are measured on
launch day with a balloon and then the launch occurs within a few hours, a Q*alphaTotal criteria is needed for the
go-no go decision. Suppose an increase of up to 600 psf-deg is allocated to wind persistence (the variation of the
wind between the measurement and the launch time) and another 400 psf-deg is allocated to margin. Then for all
simulations where the measured Q*alphaTotal is below 5400 psf-deg using the measured wind, the decision would
be go for launch. Using these criteria leads to Table 6 for a particular set of runs. These criteria will need to be
refined as the detailed design proceeds.

Table 6. Launch Probability due to Winds Aloft—selected mission models

Mission Launch Probability Mission Launch Probability
(percent) (percent)
L/F ISS August 100 Hybrid ISS February 99.95
L/F Lunar February 99.6 L/F ISS February 99.8
H/S lunar February 99.95 L/F 1SS July 100
L/F Lunar August 100

American Institute of Aeronautics and Astronautics



C. Monte Carlo Products

Besides scatter plots, products from the Monte Carlo dispersion runs include tables of statistics for all parameters
of interest (there are currently over 100 of these), statistics of key parameters at each mission event of interest,
envelope plots of various parameters (worst case and various percentages), calculations of correlations of the outputs
with respect to the various input uncertainties, time histories of parameters, squatcheloids (plots of angle of attack
versus sideslip at a particular altitude, or plots of dynamic pressure times each of these aerodynamic angle quantities
at various altitudes), and summary comparisons of the different cases.

D. Fuel Remaining

Determination as to whether the flight performance reserve (FPR) is sufficient involves examining the worst-
case liquid oxygen and liquid hydrogen remaining. If the flight runs out of either of these for more than an allowed
number of runs, then some additional propellant must be set aside for FPR and withheld from use in designing
nominal flight with maximum payload. Figure 5 shows an example of a way to do this calculation. The desire is to
minimize the total amount of propellant (LOX + LH2) needed to meet the required percentage for FPR coverage.
The figure shows a scatter plot of propellant remaining for a sample Monte Carlo run. In the case shown, all of the
data points show both LO2 and LH2 remaining. This means that FPR can be reduced while still meeting the
required success percentage. The two probability curves at the lower left represent propellant remaining for 99.73%
with 10% consumer risk (90% confidence) and 99.73% with no consumer risk considered (simply pull the 99.73%
value from the Monte Carlo experimental data). They represent a movement of the origin of the graph that would
occur if the total LH2 and LO2 available were changed. If the origin were moved to a point above these curves,
there would be quite a few cases that run out of oxygen. If the origin were moved to a point to the right of these
curves, hydrogen failures would occur. As these curves are moved to the left and down, they represent adding more
propellant and pushing the scatter plot up and to the right. A line segment of constant total propellant remaining is
shown. Finding the minimum constant that satisfies the FPR probability requirement will minimize the total
propellant needed. Integrating the probability distribution of the remaining propellant and determining the
likelihood of running out of propellant allows this constant to be minimized. For the optimum shown, some failure
cases are still allowed (shown on the plot).

E. Orbit Insertion Accuracy

Orbit insertion accuracy is shown in Figs. 6 and 7 (it is generally not impacted significantly by which
mission/vehicle model is being flown, except that a longer ascent allows the navigation errors to grow slightly). The
orbit plane error is primarily due to the navigation attitude initialization error, and the in-plane energy error is
primarily due to the uncertainty in the amount of impulse obtained during the J-2X shutdown transient.

F. Impact Footprint

Figure 8 shows impact footprint areas for the Upper Stage for the different missions and for various other
assumptions as to the altitude where the Upper Stage breaks up and the pieces that it breaks into. The Upper Stage
was propagated in 6DOF from the end of the dispersed ascent until the breakup altitude. The toe and heel of the
footprint were determined through use of a postulated heavy/low drag piece of debris and a light/high drag piece.
These results will be used to help refine the design to ensure that none of the pieces fall on any populated land
masses.

G. Stage Separation

One of the fertile areas for Monte Carlo analysis is stage separation, a key part of ascent that must be examined
in detail to ensure success. Monte Carlo analysis for Ares | stage separation is currently being performed in two
independent simulations. Figure 9 shows examples of the motion of the outside of the J-2X nozzle with respect to
the interstage boundary for two cases, one nominal (with the various uncertainties and variations included) and the
other with a boost deceleration motor (BDM) failure. When one BDM fails, a large side torque results that moves
the interstage closer to the J-2X nozzle as the interstage is pulled back from the Upper Stage. Despite an expected
high reliability for the BDMSs, since the vehicle is crewed, it is being designed to succeed even in the presence of a
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failure. These results help in determining what combination of systems and timing will lead to successful
separation.

Usable LO; Remaining vs. Usable LH; Remaining
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Figure 5. Propellant Remaining and Flight Performance Reserve Calculation Example
H. Failure and Abort Analysis

Another important area for Monte Carlo analysis is examination of the effects of various failures. Although
these failure modes are expected to be unlikely, since the vehicle is crewed, successful abort is desired for any
situation where it is possible to abort safely. For any failure that affects vehicle dynamics (for example, a thrust
vector control failure that is hard over, fails in place, or fails to null; a nozzle failure; or a First Stage case or field
joint burn through), a Monte Carlo run will generate statistics of the starting conditions for the failure (since it can
occur at any time on any flight). The value of using various parameters for abort triggers (make the decision to
abort if this value is exceeded) can readily be evaluated, as well as the ability to depart from the vehicle before
certain structural parameters are exceeded. For example, Fig. 10 shows envelopes for yaw rate around the Monte
Carlo runs that were adjusted so that there would be no false alarms even with wind gusts. Figure 11 shows a way
Monte Carlo results can be used to analyze aborts. Using the various triggers such as the one shown in Fig. 10, for a
particular thrust vector control actuator failure near the time of maximum dynamic pressure, one can measure the
time available. In Fig. 11, the first abort trigger limit to be passed is graphed, and the y axis shows the time duration
between the moment the trigger value is reached and the structural load indicator limit is exceeded (hence the time
available to abort, not considering the possibility of an explosion after the limit is reached).

Figure 12 shows an example of a flight parameter at the presumed time when the crew module and launch abort
system (CM/LAS) would depart from the failing launch vehicle (assuming it takes 0.55 seconds after the trigger is
passed before the CM/LAS leaves). This information can be used to help with CM/LAS modeling for ensuring the
abort will be successful.
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Wedge Angle at CEV Separation vs. Run Number
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Figure 6. Orbit Plane Error at Insertion

Delta Semi-Major Axis at CEV Separation vs. Run Number
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Figure 7. Semi-Major Axis Error at Insertion
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Figure 8. Upper Stage Impact Footprint Areas. Yellow = lunar mission, open of launch window, red =
lunar mission, close of launch window, green = ISS mission, open of launch window, stars are worst case results,
diamonds are 99.73% values with 90% confidence, squares are mean impact points of the high and low drag pieces.

Scatter plot of nozzle position at separation plane
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Figure 9. Stage Separation Monte Carlo Results. Left graph is no-failure case, right is one Boost
Deceleration Motor failure. The outer circle represents the interstage that, if contacted, would damage the J-2X
nozzle. The blue Monte Carlo marks indicate the nearest approach of the outside of the nozzle to the interstage.
Clearance between the nozzle and the interstage is 42 inches at the start of the stage separation. The green ellipses
are 99.73% ellipses.

I. Guidance Analysis

Monte Carlo analysis was also used to determine the guidance approaches that are best for Ares I. As an
example of this, Monte Carlo runs were used to compare the use of different open-loop guidance independent
variables. The guidance commands in the open-loop table are pitch, yaw, and roll. They may be a function of time,
altitude, Mach number, speed, or other parameters. Analysis showed that time was not as good a parameter as a
state variable, but that it did not matter much which state variable was used. This result agrees with Ref. 6. Altitude
is currently being used since it is monotonic through staging. Monte Carlo analysis was also used to compare the
Shuttle closed-loop guidance (Powered Explicit Guidance)® to a more complete optimization process as a closed-
loop guidance approach. In addition, Monte Carlo analysis was used was used to compare various limits on
guidance-commanded attitude rates and attitude accelerations for their affects on the flight control.
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Figure 10. Yaw Rate Envelopes for Monte Carlo Runs (solid curves) and Abort Trigger Envelope
(dashed curve)
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Figure11. Time Available Before Vehicle Structural Failure After Abort is Triggered with Thrust
Vector Control Failure. The failure mode was both actuators failing in place at their current value. Zero on the y-
axis represents the time the first trigger value is passed, some time after the failure occurs. The first trigger to be
exceeded is indicated for each Monte Carlo run on the plot. MBLI limit not met means that the load limit was never
reached for those particular cases (blue squares at zero on the y axis). So in general the crew has at least 2 seconds
to depart from the vehicle before structural limits are reached.
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Figure 12.  Attitude Rate at the Presumed Time of CM/LAS Separation from the Launch Vehicle for
the Thrust Vector Control Errors in Figure 11. Time of flight is on the x-axis. These data can be used to assist
in CM/LAS design for abort.

J. Flight Control Analysis

Development of the flight control design for each design cycle starts with stability analysis. Gains are derived
that provide stability (along with the flex filters) and sufficient time response in the linear system. The flight control
design is tested in the nonlinear, 6DOF time simulation (MAVERIC) to show that it successfully flies the vehicle
and to verify stability and transient response characteristics. Many potential issues are discovered before the use of
Monte Carlo simulations. But until all the uncertainties are encountered (winds, aerodynamic moments, TVC errors,
lag times, etc.), it is not possible to be sure the flight control will succeed in general. When issues are found in the
Monte Carlo results, they can be chased down in the runs that led to the problems. For example, Fig. 13 shows the
yaw error envelope for Upper Stage flight (the red line is the nominal case). The errors at the start of Upper Stage
flight result from transients due to the coast during staging before J-2X startup and due to the closed-loop guidance
commands for steering to a different attitude. The significant error at the end of Upper Stage flight, just prior to
insertion, was less understandable. The vast majority of runs had an error less than 1.5 deg at insertion, but many
were higher than this value. It was determined that the integral gain was far too low to cover certain cases where
dispersions were combined in a way that increased yaw disturbance torque towards the end of powered flight. The
attitude integral gain was increased and the stability analysis repeated to verify margins. As can be seen in Fig. 14,
this portion of the error can be removed with some work in the control design.

Another example is in Figs 15-16. Although some error is unavoidable if the vehicle is to remain stable (and
since the winds are changing), some Monte Carlo runs show high error around 80 seconds into flight (Fig. 15).
Similar to the upper stage anomaly, bad combinations of vehicle dispersions compounded by bad winds caused
larger than expected pitch errors in this portion of flight. With some adjustment of the attitude proportional gain,
this is improved (Fig. 16).

VIl. Conclusion

This paper describes how Monte Carlo simulation is being used to understand many of the issues involved with
designing the Ares I launch vehicle. Starting with high fidelity simulation along with uncertainties in each input
parameter of interest, the simulations needed are defined in order to examine worst case design points for each
discipline area. Besides helping with vehicle design parameters, the simulation also assists with determining
whether the design meets requirements in many integrated vehicle areas. Many of these were described in the paper.
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As the Ares | design matures, with each passing month, more uses for the data output from the Monte Carlo runs
are discovered as the various subsystems look for their design cases. After the design is firm, Monte Carlo
simulation will be used to assist in verifying that the Ares | meets its requirements.
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Figure 13. Yaw error before flight control adjustment (lunar February H/S mission). This graph is for
Upper Stage flight. The early excursions are expected from attitude deviations associated with stage separation as
well as the closed-loop guidance commanding an attitude maneuver once it begins issuing commands. A few out of
the 2000 Monte Carlo runs had significant attitude errors near MECO, although the vast majority of cases had less
than 1.5 degrees error.
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Figure 14. Yaw error after flight control adjustment for the case in Fig. 13. Note the improvement at the
end of flight.
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Figure 15. Yaw Error Envelope (and nominal) Prior to Flight Control Adjustment (L/F lunar February
mission)
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Figure 16. Yaw Error Envelope (and nominal) after Flight Control Adjustment (L/F lunar February
mission)
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Introduction

IBM® SPSS® Statistics is one of the world’s leading statistical
software solutions, providing predictive models and advanced
analytics to help solve business and research problems. For
many businesses, research institutions and statisticians, it is
the de facto standard for statistical analysis. Organizations use
SPSS Statistics to:

« Understand data.

+ Analyze trends.

+ Forecast and plan.

« Validate assumptions.

« Drive accurate conclusions.

The SPSS Statistics environment offers a wide range of
multivariate procedures for investigating complex data
relationships. A number of procedures include advanced
models such as general and generalized linear modeling
capabilities. With general linear models, you can model
relationships and interactions between many factors. The
general linear model incorporates a number of different
statistical models: analysis of variance (ANOVA), multivariate
analysis of variance (MANOVA), analysis of covariance
(ANCOVA), repeated measures and more. General linear
modeling is well suited for statisticians who analyze data
with unique characteristics (for example, nested-structure data)
or who describe relationships between a dependent and a

set of independent variables to discover whether random
effects introduce correlations between cases.

Regression models (for continuous dependent variables) are

a family of classical predictive techniques, all of which involve
fitting (or regressing) a line or curve to a series of observations
to model effects or predict outcomes. With SPSS Statistics,
you can also use regression models to predict categorical
outcomes for more than two categories, easily classify data
into two groups, accurately model non-linear relationships,
find the best predictor from dozens of possibilities and more.



Business Analytics

Predictive models, such as linear regression, require a set of
known inputs to predict an outcome. In many real-world
applications, however, inputs are not known with certainty,
and users are interested in accounting for that uncertainty in
their models. For example, when given a profit model that
includes cost of materials as an input, users also want to
account for uncertainty in materials cost and determine the
likelihood that profit will fall below a target value. To deal
with uncertainty in future input values, statisticians turn

to simulation.

SPSS Statistics includes a simulation module designed

to account for uncertainty in inputs to predictive models.
This paper describes Monte Carlo simulation, the value of
using Monte Carlo simulation for risk analysis and how
SPSS Statistics and its new simulation module can help
businesses use Monte Carlo simulation for risk analysis.

Uncertainty in inputs into models

The development of a forecasting model requires making
certain assumptions. These might be assumptions about the
investment return on a portfolio, the cost of a construction
project or how long it will take to complete a certain task.
Because these are projections, it is not possible to know with
certainty what the actual value will be, but based on historical
data, expertise in the field or past experience, it is possible

to estimate. Although this estimate is useful for developing

a model, it contains some inherent uncertainty and risk,
because the estimate is an unknown value.

Traditionally, companies address uncertainty in one of

three ways:

o Point estimates use the most likely values for the uncertain
variables. These estimates are the easiest, but they can return
very misleading results. For example, consider what might
happen if you decide to cross a river because its average depth
is three feet. Or, suppose, because you have calculated that it
takes an average of 25 minutes to get to the airport, you leave
25 minutes before your flight takes off. How likely are you to
miss it?

Range estimates typically calculate three scenarios: the best
case, the worst case and the most likely case. These types of
estimates can show you the range of outcomes, but not the
probability of any of these outcomes. This approach also
considers only a few discrete outcomes, ignoring hundreds
of thousands of others. Simply pug, it gives equal weight to
each outcome, so there is no attempt to assess the likelihood
of each outcome. Interdependence between inputs and the
impact of different inputs relative to the outcome are ignored,
oversimplifying the model and reducing its accuracy.

o What-if scenarios are usually based on the range estimates
and typically are about exploring the effect of things you can
control. What is the worst case? What if sales are best case
but expenses are the worst case? What if sales are average,
but expenses are the best case? What if sales are average,
expenses are average, but sales for the next month are flat?
This form of analysis can be time consuming, and it results
in a great deal of data.

With each of the three traditional approaches, it is not possible
to determine the probability of achieving different outcomes.
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Addressing uncertainty with simulation

A Monte Carlo simulation is a computer experiment involving
random sampling from probability distributions of the inputs
to obtain approximate solutions to problems, especially in

the case of a range of values where each has a calculated
probability of being the solution. When statisticians use the
term “simulation,” they usually mean Monte Carlo simulation.

In this approach, uncertain inputs are modeled with probability
distributions (such as the triangular distribution), and
simulated values for those inputs are generated by drawing
from those distributions. The simulated values are then

used in a predictive model to generate an outcome. The
process is repeated many times (typically thousands or tens

of thousands of times), resulting in a distribution of outcomes
that can be used to answer questions of a probabilistic nature
to determine behavior, to analyze risk and more.

One of the strengths of Monte Carlo simulation is that it
makes it possible to account for risk in quantitative analysis
and decision making. Historical simulation (usually used in
computing value at risk in financial scenarios, for example)
consists of generating scenarios by sampling historical data
associated with each risk factor included in the problem.

This approach doesn’t require any distributional assumptions.

Running simulations from known distributions based on
historical data produces accuracy. For example, stochastic
risk analysis uses a model and Monte Carlo simulation to
analyze the effect of varying inputs on outputs of the model.
It defines probability distributions to express the possible
variation of the model input variables and uses the Monte
Carlo simulation technique to calculate the effect of
uncertainty on the model’s key outputs. Stochastic analysis
can be an invaluable decision-making tool for investment
appraisal, business and strategic planning, marketing

and sales forecasting, pricing models, along with many
scientific applications.

If historical data exists, you still might not want to use
historical simulation because Monte Carlo simulation has the
advantage of allowing for a wider variety of scenarios than the
rather limited results that historical data can provide.
Therefore, you can fit probability distributions to the data and
use it as the basis for input distributions for Monte Carlo
simulation. For example, someone might have collected
historical data on a product price and might want to create a
distribution of possible future prices that is based on the data.

One of the reasons why risk analysis was not frequently
applied in the past is that computers were not powerful
enough to handle the demanding needs of Monte Carlo
simulatdion. In addition, for each case, you had to develop a
custom project appraisal computer model that represented
the relationships between input and output variables using a
combination of functions, formulas and data. Now, however,
most of the computers and processors can handle intensive
computation from Monte Carlo simulation.
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The value of Monte Carlo simulation
for risk analysis

Existing statistical and modeling software solutions have
different methods for addressing risk analysis. Some modeling
solutions work in the Microsoft Excel environment. The
advantage of this approach is that companies can easily
incorporate risk management in everyday processes at all
levels of their organization because spreadsheet models have
been created for them.

Orther statistical software products can act as standalone
solutions for risk management, but they are designed mostly
for banks and other types of financial institutions. They
provide risk management tools for the management and
control of market risk, credit risk, operational risk and
liquidity risk, but it is not clear how a model is built within
their framework.

Monte Carlo simulation solutions either provide functions
to simulate from all of the standard probability distributions
or offer two-dimensional Monte Carlo simulations.
Econometric tools are available for performance and risk
analysis, and other software has functions for calculating

a risk model. Custom coding is necessary if you want to

use these solutions for Monte Carlo simulation and risk
analysis together.

Risk analysis can greatly benefit from Monte Carlo simulation.
Consider a simple example of monthly sales as a function of
advertising expenditures, the number of sales agents and the
consumer confidence index (called “cci” in the model), which
is an indicator of the general health of the economy. This
process has several stages:

1.Set up the model and identify risk variables
Figure 1 demonstrates the data represented over 5 years
of monthly sales data that was used to create the linear
regression model, assuming that there are no time dynamics
in the data and no correlation in the error terms.

| aden | e [ agems [ sales |
11332.00 55.00 109.00 6709410.00
69477.00 93.00 113.0[]' 7829320.00
59087.00 73.00 105.00 6943660.00
36364 00 53.00 118.00 7257860.00
50401.00 42 00 115.00 6451200.00
75382_00. 102.00 107.00 7476770.00
75892 00 68.00 122.00 7364630.00
37461.00 73.00 116.00 £6980820.00
73628.00 73.00 116.00 6840060.00
22951.00 91.00 98.0[]' 6943570.00
EEQAR NN RO N0 112 00 Ti49030 0N

Figure 1: The data for monthly sales
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Figure 2 shows the linear regression model generated after 2.Specify probability distributions.

fitting the model with sales as a dependent (target) variable The specification of a probability distribution for each
and advert, cci and agents as independent (predictor) variables. selected risk variable involves setting up a range of values
In the example, the advert, cci and agent variables are those and allocating probability weights. In general, analysts for
for which the projected value is both probable and potentially the project should rely on judgment and subjective factors
damaging to the monthly sales value. for determining the range of values and probabilities.

Figure 3 illustrates some of the probability distributions
used in the application of risk analysis.

Model Summary

Adjusted R Std. Error of
Model R R Sguare Square the Estimate
1 7117 505 479 275285 8758
a. Predictors: (Constant), agents, advert, cei
ANOVA®
Sum of
Model Squares dr Mean Square F Sig.
1 Regrassion 4.330E+12 3 1.443E+12 18.047 000"
Residual 4.244EH12 56 | 75782313427
Total B.574E+12 59
a. Dependent Variable: sales
b. Predictors: (Constant), agents, advert, cci
Coefficients™ i N . il
— min Normal max min Triangular max
Unstandardized Coeflicients Coefficients 95.0% Confidence Interval for B
Madel B Std. Error Beta 1 Sig Lower Bound | Upper Bound
vl (Constant) | 4627254.938 | 501272.059 9.231 .ooo 3623086.337 5631423538
advert 6.619 1.880 3 3502 001 2833 10405
cei 10331.400 1705.754 573 6.0567 ooo 6914.363 13748437
agents 12747.541 4260.719 284 2.992 .004 4212.285 21282788
a. Dependent Variable: sales
Fzgm‘e 2: Linear regression model with three risk variables

min Uniform max i Binomial

Figmfe 3: Probability distributions used in risk analysis
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If historical data exists, you can skip this stage and conduct
historical simulation directly. Or, you can fit distributions to
the data for Monte Carlo simulation.

3.Run simulations
The model is processed and repeated until enough results
are gathered to make up a representative sample of the
near infinite number of possible combinations. During a
simulation, the values of the risk variables are generated
randomly according to specified probability distributions.
In the example, the goal of the simulation was to look at
the probability of reaching a monthly target sales goal of
§7,000,000. The results of the model (the “monthly sales”
in the example) for each run are computed and stored away
for statistical analysis (the final stage of the risk analysis
process). Figure 4 shows the cumulative distribution
function of monthly sales (based on 100,000 records of
simulated data) where you can observe that the probability
of reaching the monthly target sales goal of $7,000,000 is
62 percent.

Cumulative Distribution
Tonggen

Cumulative Probability
i

o T T T T
6,000,000 6,500,000 7,000,000 7,500,000 8,000,000
sales

[<7o0ooo |»7000000 |
|37.73% 62.27% |

Figure 4: Cumulative distribution function of monthly sales

The example also looked at the effect of varying the number
of sales agents over three fixed values: 110, 100 and 90 to
analyze the effect on monthly sales of reducing sales staff.
Varying an input over a set of fixed values, as done here for
number of sales agents, is referred to as “sensitivity analysis.”
Figure 5 shows the sensitivity analysis of varying the number
of sales agents with respect to monthly sales.
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Cumulative Distribution

7000000
h 4
1.0
£
= 057
-
[}
o
o
=
o 06
L3
=
s
S 0.4
E
=1
(2]
0.2
oo T T T T
8,000,000 8,500,000 7,000,000 7,500,000 8,000,000
sales
agents* +7000000 =7000000
| EEE FOI% 52.99%
100 52.59% 47 4%
90 65.65% 3.32%

Figure 3: Sensitivity analysis

You can see that when you reduce your sales staff from 110
to 90, you decrease your chances of meeting your goal from
63 percent to 31 percent.

Next, the company decides to analyze the impact of customer
satisfaction on monthly sales. It has obtained monthly
satisfaction data from both a formal survey of existing
customers and analysis of social media content. This data has
been spread across five categories: Strong Negative, Somewhat
Negative, Neutral, Somewhat Positive and Strongly Positive.

Specifically, the company wants to determine whether the
satisfaction level measured from social media data has an
impact on the sales target. An additional step can be taken to
confirm this hypothesis.

4. Fitting a categorical distribution
The original sales model can be expanded by including
monthly satisfaction data. In the original story, the company
wanted to know how likely it was to achieve a monthly
sales target of $7,000,000. For inputs with a categorical
distribution, you can automatically compute a multiway
contingency table from the historical data that describes
the associations between those inputs. The contingency
table is then used when data are generated for those inputs.
After fitting categorical distributions and an associated
contingency table to the monthly satisfaction level data,
the simulation is rerun to generate scatter plots of the
target with the inputs. Scatter plots that contain a
categorical target and/or categorical input are displayed
as heat maps, as shown in Figure 6.



Business Analytics

Percent

W25
W20
H15
W10
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Moo

8500000.00-

8000000007

750000000

7000000.00

Target: sales

6500000.00-

6000000.007

550000000

T T T T

T
Strongly Somewhat Meutral Somewhat Strongly
Megative Megative Positive Positive

satisfaction_social_media

Figure 6: The expanded model that includes satisfaction data shows that
when the satisfaction level measured from social media data is “Neutral,”
the monthly sales numbers are spread roughly evenly around the
$7,000,000 target. However, when the social media satisfaction level is
“Somewhat Positive” the sales distribution shifts so that the bulk of the
distribution (for that satisfaction level) exceeds the target. This suggests
that customer satisfaction level as measured by social media data is an
integral part of attaining the sales target.

SPSS Statistics: Building better simulations

and assessing risk with automation

The simulation functionality in SPSS Statistics is designed to

account for the uncertainty of values of the inputs in predictive

models. It helps users:

+ Design a simulation. Users can specify all details required to
run a simulation, such as the distributions for the simulated
predictors and correlations for those predictors. When
historical data is present, distributions and correlations for
simulated predictors can be automatically determined from
that data.

» Save specifications for a simulation to a simulation plan file.

+ Run a simulation. The specifications for the simulation can
come from a loaded simulation plan file or the user can
simply provide the specifications in the associated user
interface and run the simulation from that user interface.

+ Load a simulation plan, modify any aspect of the plan,
optionally run the modified simulation and optionally save
the changes.

In addition to the procedures described in the previous section,
SPSS Statistics includes a range capabilities to help users build
better simulations, including:

Simulating strings. Non-numeric variables such as “male” and
“female” can be simulated without recoding them as numeric
variables. The software also supports fitting a categorical
distribution to a string field in the active dataset. For example,
if a model contains gender as an input, the user can load the
model, fit the model inputs to the active dataset, and SPSS
Statistics will fit a categorical distribution for string fields.
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Support for Automatic Linear Modeling (ALM). Users can
export models from ALM and use them as the starting point
for the simulation.

Association between categorical inputs. SPSS Statistics
can automatically determine and use associations between
categorical inputs when generating data for those inputs. A
multiway contingency table is computed for all inputs that are
fit to a categorical distribution. This table is then used when
generating data for the inputs.

Ability to generate data in the absence of a predictive
model. In this case, the user simply specifies which variables
to simulate and either fits them to the active dataset or
manually specifies their distributions.

How does it work? Here are two examples.

Modeling impact on profit due to uncertainty of
cost of materials

Paul is an analyst at a large manufacturing company and is
responsible for financial modeling and forecasting. Given

the current instability in markets, Paul’s managers want him
to include risk in the cost of materials in his profit model. For
this scenario, many statisticians use a relatively simple profit
model: estimates of the maximum, minimum and most likely
value for cost of materials. This has the limitations described
previously for range estimates.

10

Using the new simulation dialog in SPSS Statistics, Paul
enters his profit model in the expression builder and specifies
“cost of materials” (one of the predictors in the model) as a
simulated predictor. Paul only has estimates of the maximum,
minimum and most likely cost, so he chooses a triangular
distribution to model his cost variable. Because there is some
uncertainty in his estimates of the maximum, minimum and
most likely cost, Paul plans to run his simulation multiple
times, varying the parameters of his cost distribution in each
simulation. He is able to save his specifications in a simulation
plan so that his scenario analysis does not have to be
completed in just one session, and he is able to vary the
parameters for his triangular distribution more easily after
reloading his simulation plan.

Modeling energy usage accounting for uncertainty
in temperature

It can be a challenge to model or predict energy usage needs
for a utility company that purchases energy from other
providers when demand exceeds on-site production capacity.
Consider Pamela, who is responsible for that task in her utility
company. She models energy needs with a regression model
that she has built in SPSS Statistics. Pamela has saved the
model to an XML file, which enables her to quickly apply the
model to a given set of inputs—something that she does daily.

One of the primary sources of uncertainty in Pamela’s model
is temperature. Although she can easily use what-if analysis to
get point estimates of energy needs for specific temperatures,
she is most interested in the likelihood that energy needs

will exceed production capacity on a given day, necessitating
the purchase of additional energy from an outside provider.
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Pamela has access to historical temperature data that she
plans to use to model uncertainty in daily temperature, so
she starts up SPSS Statistics and loads that data.

She opens the simulation dialog, loads her regression model
and specifies that temperature is a simulated predictor. She
then chooses to automatically fit (autofit) the temperature
distribution from the historical data. Because she also has
temperature forecasts for the current day, she can customize
the parameters of the autofit distribution if she chooses.
She specifies values for the fixed predictors and obtains a
distribution of energy usage, from which she can easily
determine the probability that energy needs will exceed
on-site production capacity by a given amount.

Conclusion

Monte Carlo simulation helps address the challenges of
dealing with uncertainty in predictive and forecasting models
and assessing risk. SPSS Statistics is designed to help you use
Monte Carlo simulation in risk analysis. Using the simulation
module in SPSS Statistics, you can simulate data according to
parameters you specify and then use that simulated data as
input for predicting an outcome. You can also modify the
parameters used to simulate the data and compare outcomes.
For example, you can simulate various advertising budget
amounts and see how that affects total sales. Based on the
outcome of the simulation, you might decide to spend more
on advertising to meet your total sales goal. With automation,
features for saving simulation plans and support for predictive
modeling, the simulation module in SPSS Statistics smoothly
combines risk analysis and Monte Carlo simulations in one
software solution.

About IBM Business Analytics

IBM Business Analytics software delivers data-driven insights
that help organizations work smarter and outperform their
peers. This comprehensive portfolio includes solutions for
business intelligence, predictive analytics and decision
management, performance management, and risk management.

Business Analytics solutions enable companies to identify

and visualize trends and patterns in areas, such as customer
analytics, that can have a profound effect on business
performance. They can compare scenarios, anticipate potential
threats and opportunities, better plan, budget and forecast
resources, balance risks against expected returns and work

to meet regulatory requirements. By making analytics

widely available, organizations can align tactical and strategic
decision-making to achieve business goals. For further
information please visit ibm.com/business-analytics.

Request a call

To request a call or to ask a question, go to
ibm.com/business-analytics/contactus. An IBM
representative will respond to your inquiry within
two business days.
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Attachment C - Example Fish Consumption Rate Distribution
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